Learn these Experiment

Thanks to S Gray, Drummond Community High School,  for putting together this book of experiments that you should have covered in your N5 Physics lessons. Any of these could be discussed in your exam as a question.


Required Experiments v3

Signature


SPACE Resources

Space Notes

Space

Sorry I just couldn’t get this to fit on 2 pages. I am sure someone will send it back to me looking beautiful!

Space Mind map, click here for your pdf version

Just heard about this on twitter!

You can read about some of the risks of human spaceflight in the infographic below.

Infographic: Some of the most harrowing space disasters that have occurred.


Source Space.com: All about our solar system, outer space and exploration

Here are a few links and documents. Hope you can get access to them.

www.open.edu/History of Universe Timeline

The EM Spectrum and Space

The EM spectrum gives us loads of important information about the world outside our Earth

http://physics.bu.edu/~duffy/HTML5/emission_spectra.html

Launching a Rocket

Want to be a rocket scientist? Can you launch a payload to 400 km in your first go? Don’t forget to have drag on and mass use to be more natural!

https://www.sciencelearn.org.nz/resources/389-lift-offRocket

Dock with the ISS

https://iss-sim.spacex.com/

Signature
March 2022

Quantity Symbol, Unit and Unit Symbol

I’ve put together, with Mrs Mac’s help, a document with quantity, symbol, unit and unit symbol so that you know the meaning of the terms in the Relationships Sheet. It is in EXCEL so that you can sort it by course, quantity or symbol.

Quantity, Symbol, Units  the excel sheet

Quantity, Symbol, Units N5 a pdf sheet sorted by course and then alphabetical by quantity.

Quantity, Symbol, Unit, Unit Symbol N5-AH

NHAPhysical Quantity symUnitUnit Abb.
5absorbed dose D gray Gy
5absorbed dose rate H (dot)gray per second gray per hour gray per year Gys-1 Gyh -1 Gyy-1
567acceleration a metre per second per second m s-2
567acceleration due to gravity g metre per second per second m s-2
5activity A becquerel Bq
567amplitude A metre m
567angle θ degree °
567area A square metre m2
567average speedv (bar)metre per second m s-1
567average velocity v (bar)metre per second m s-1
567change of speed ∆v metre per second m s-1
567change of velocity ∆v metre per second m s-1
5count rate - counts per second (counts per minute) -
567current I ampere A
567displacement s metre m
567distance dmetre, light year m , ly
567distance, depth, height d or h metre m
5effective dose H sievert Sv
567electric charge Q coulomb C
567electric charge Q or q coulomb C
567electric current I ampere A
567energy E joule J
5equivalent dose H sievert Sv
5equivalent dose rate H (dot)sievert per second sievert per hour sievert per year Svs -1 Svh-1 Svy -1
567final velocity v metre per second m s-1
567force F newton N
567force, tension, upthrust, thrustF newton N
567frequency f hertz Hz
567gravitational field strength g newton per kilogram N kg-1
567gravitational potential energy Epjoule J
5half-life t1/2 second (minute, hour, day, year) s
56heat energy Eh joule J
567height, depth h metre m
567initial speed u metre per second m/s
567initial velocity u metre per second m s-1
567kinetic energy Ek joule J
567length l metre m
567mass m kilogram kg
5number of nuclei decayingN - -
567period T second s
567potential difference V volt V
567potential energy Ep joule J
567power P watt W
567pressure P or p pascal Pa
5radiation weighting factor wR- -
567radius r metre m
567resistance R ohm Ω
567specific heat capacity c joule per kilogram per degree Celsius Jkg-1 °C -1
56specific latent heat l joule per kilogram Jkg -1
567speed of light in a vacuum c metre per second m s -1
567speed, final speed v metre per second ms -1
567speed, velocity, final velocity v metre per second m s-1
567supply voltage Vsvolt V
567temperature T degree Celsius °C
567temperature T kelvin K
567time t second s
567total resistance Rohm Ω
567voltage V volt V
567voltage, potential difference V volt V
567volume V cubic metre m3
567weight W newton N
567work done W or EWjoule J
7angle θ radian rad
7angular acceleration aradian per second per second rad s-2
7angular displacement θ radian rad
7angular frequency ω radian per second rad s-1
7angular momentum L kilogram metre squared per second kg m2 s -1
7angular velocity,
final angular velocity
ω radian per second rad s-1
7apparent brightnessbWatts per square metreWm-2
7back emfevolt V
67capacitance C farad F
7capacitive reactance Xcohm W
6critical angle θc degree °
density ρ kilogram per cubic metre kg m-3
7displacement s or x or y metre m
efficiency η - -
67electric field strength E newton per coulomb
volts per metre
N C -1
Vm -1
7electrical potential V volt V
67electromotive force (e.m.f) E or ε volt V
6energy level E 1 , E 2 , etcjoule J
feedback resistance Rfohm Ω
focal length of a lens f metre m
6frequency of source fs hertz Hz
67fringe separation ∆x metre m
67grating to screen distance D metre m
7gravitational potential U or V joule per kilogram J kg-1
half-value thickness T1/2 metre m
67impulse (∆p) newton second
kilogram metre per second
Ns
kgms-1
7induced e.m.f. E or ε volt V
7inductor reactanceXLohm W
7initial angular velocity ω oradian per second rad s-1
input energy E ijoule J
input power Piwatt W
input voltage V 1 or V2 volt V
input voltage V ivolt V
6internal resistance r ohm Ω
67irradiance I watt per square metre W m-1
7luminoscityLWattW
7magnetic induction B tesla T
7moment of inertia I kilogram metre squared kg m2
67momentum p kilogram metre per second kg m s-1
6number of photons per second per cross sectional area N - -
number of turns on primary coil n p- -
number of turns on secondary coil n s- -
6observed wavelengthλ observedmetrem
output energy E o joule J
output power P owatt W
output voltage V o volt V
6peak current Ipeak ampere A
6peak voltage V peak volt V
7phase angle Φ radian rad
67Planck’s constant h joule second Js
7polarising angle
(Brewster’s angle)
i pdegree ̊
power (of a lens) P dioptre D
power gain Pgain - -
7Power per unit areaWatts per square metreWm-2
primary current I p ampere A
primary voltage Vpvolt V
7radial acceleration ar metre per second per second m s-2
6redshiftz--
67refractive index n - -
6relativistic lengthl'metrem
6relativistic timet'seconds
rest mass mo kilogram kg
6rest wavelengthλrestmetrem
6root mean square current I rmsampere A
6root mean square voltage Vrmsvolt V
7rotational kinetic energy Erotjoule J
7schwarzchild radiusrSchwarzchildmetrem
secondary current Is ampere A
secondary voltage Vsvolt V
7self-inductance L henry H
67slit separation d metre m
7tangential acceleration atmetre per second per second m s-2
6threshold frequency fohertz Hz
7time constanttseconds
7torque Τ newton metre Nm
7uncertainty in Energy∆E jouleJ
7uncertainty in momentum∆px kilogram metre per second kgms-1
7uncertainty in position∆x metre m
7uncertainty in time∆t seconds
6velocity of observer vometre per second m s-1
6velocity of source vsmetre per second m s-1
voltage gain - - -
voltage gain Ao or V gain - -
567wavelengthλmetrem
6work functionWjouleJ

 

Properties of Matter Notes

Not the best fit for a Properties of Matters song, but still lots of important material here.

The Properties of Matter Booklet in both word and pdf form.

Here are a set of summary notes, I made a few changes and put them into a table rather than boxes to help the flow, not that anyone would know. Thanks to the teacher who produced these- sorry there was no name on them.

A bright 2 page set of summary notes for this topic. NB Please add to this “The length of the line for vaporisation should be longer than that for melting as more energy is required to change a liqued to a gas than a solid to a liquid.
A scribble from an online lesson. The last 2 comments are perfect answers for those “Explain using the kinetic model of gases….” questions.
Using a simple syringe will remind you of Boyle’s Law, if you reduce the volume pressure increases. I know this as it really hurts my finger when I squeeze the gas into a smaller space or volume.
just some scribbles from an online lesson. We were trying to remember which law went with which rule and this is what we came up with BOYLE’s LAW. If you had a big BOIL and you add pressure by squeezing it the volume increases as it splatters all over the place! CHARLES’ LAW, we know this guy called Charlie and when he gets red hot his face swells up (volume increases with temperature) And GAY-LUSSAC law has been incorrectly attributed to him so we can put him in a pressure cooker (picture below) and increase the temperature. The volume is fixed so we know the pressure increases as the cooker makes a big hissing sound when it’s about to blow!
Courtesy of Wikipedia

Gay-Lussac is incorrectly recognized for the Pressure Law which established that the pressure of an enclosed gas is directly proportional to its temperature and which he was the first to formulate (c. 1809). He is also sometimes credited with being the first to publish convincing evidence that shows the relationship between the pressure and temperature of a fixed mass of gas kept at a constant volume.

Maybe for the deception he should be sent to Pressure Cooker!

A Pressure Cooker

These laws are also known variously as the Pressure Law or Amontons’s law and Dalton’s law respectively.

https://mrsphysics.co.uk/n5/wp-content/uploads/2022/03/starter-questions.pptx https://mrsphysics.co.uk/n5/wp-content/uploads/2022/03/kinetic-theory-of-gases.pptx

Thanks to other Physics teachers who have provided resources for these notes.

February 2022
Signature

ELECTRICITY from 2017

Here is the topic song

Updated November 2019

Electricity 2017 Final word version of the Electricity Unit.

Electricity 2017 Final  pdf version.

The booklet is large as it contains lots of questions for you to practice, practicals for you to complete and notes.

They are large notes so that you ought to be able to work your way through whether you are in class or away at college etc.

Please return your copy to the faculty on 30th April 2020!

The section numbers are linked to the compendium with all the things to cover in National 5 Physics.

Thanks to the person on GUZLED who shared these. I’ve redone them so they don’t lose their formatting.
https://mrsphysics.co.uk/n5/wp-content/uploads/2021/09/N5-Electrical-atoms.pptx

I can now upload ppp to mrsphysics, so here is one of the first. It is to cover section 9 and 10 of the outcomes. Thanks to the kind person who produced the stuff on A.C and D.C. I’ve been using it for years. Let me know if I’ve nicked it from you and I’ll add my grateful thanks.

Ohm’s Law

Components

resistor network Try this when you think you have got to grips with resistances in series and parallel.

AC_DC[1] This is a powerpoint presentation that someone passed to be in the days of SG. It covers AC and DC traces

Voltage (2)

Voltage Analogy

Voltage Dividers

VOLTAGE DIVIDER FORMULAE The formula sheet for voltage dividers

VOLTAGE divider circuits (2)

VOLTAGE divider circuits2

POTENTIAL DIVIDERS2

POTENTIAL DIVIDERS

POTENTIAL DIVIDERS

VOLTAGE divider Q  Practice those horrible voltage divider questions with this pdf version of the document below. The answers are given for you to check. VOLTAGE divider Q

Resistance NetwoRK

Feeling brave- this isn’t as hard as it looks, but you can impress your friends and family.

Other notes

Mains- Electricity in the home

Here are some additional notes that might help as you go through the materials. Check out the post on using your calculators to measure resistance (I’ll add the link here when I’ve found the post!)

Ring main   Based on the SG course notes and not really in the N5 course, but it might give a little background to why when calculating the fuse rating for an appliance you use 240V and not the 230 V as stated.

Traces

Older Notes

EE1 – Electricity LOCKERBIE The old electricity notes (based on a colleagues work- thank you and I’ll find out who you are), these will be superceded when the document above is completed.

Elect & elect D&G Prob Book no answers These are some great little questions by Mr Belford from Dumfries Academy, but some of the numbers are a little bit fictional!

Elect & elect D&G Prob Book no answers The above document as a pdf file.

…… to be continued!

Signature
January 2021

Dynamics 2017

The Dynamics Notes are now uploaded to the blog post called Dynamics 2018, although most of the material here is totally relevant. It might well be in the wrong place and I’ll sort that as soon as I can.

These are examples to find acceleration and displacement from v-t graphs. v-t graph examples.

Currently I’ve worked out the displacements. I’ll add the accelerations when I’ve done them! v-t graph example answers

N5 D&S Problem Booklet

Dynam & Space D&G PS Book

parachutes pdf file of the power point

parachutes power point

Projectile questions pdf file of projectile questions

Projectile questions

Projectile questions1

mass and weight

mass and weight

work done calculations

Latent Heat questions

Revision Questions

Use the pdf file, printed from a powerpoint presentation to practice work for the D&S topic. Some space has been left so that you can record your answers on the sheets. They are saved 6 slides to a page

Dynamics and Space Revision

Dynamics and Space Revision ANSWERS Don’t peek at the answers until you’ve finished going through the questions and created your own answers.

Revision Practice

Need help with motion graphs, practice with this link

https://tinycards.duolingo.com/decks/motion graphs

https://tinycards.duolingo.com/decks/equations

https://tinycards.duolingo.com/decks/more equations

Resources from other schools

I would like to thank all the schools who have produced notes that are reproduced here. Know that I am really grateful. I have a half finished set of my own notes, but don’t think I can get them suitably done in time. Be assured that at least you’ll have some excellent higher notes next year, and after those scores I am expecting a big Higher class 2017-2018!

Dynamics and space part1

Dynamics and space part2

The above two booklets count as one!

N4 N5 Unit 1 Summary Notes[1]

N4 N5 Unit 1 Summary Notes[1] These are the same set of notes, one is in word, but for those that cannot read that the other is a pdf file, which you ought to be able to read.

D&S Summary Notes

The notes below would be combined into one booklet (the one at the end of this section)

N5 DS Mar 13 Dynamics Teacher notes

N5 DS Mar 13 Forces Pupil notes

N5 DS Mar 13 Forces Teacher notes

N5 DS Mar 13 Space Pupil notes

N5 DS Mar 13 Space Teacher notes

N5 DS Pupil material notes FINAL COPY 13th JUNE

N5 DS Pupil material notes FINAL COPY 13th JUNE

The booklet below is an Intermediate 2 booklet and contains some material for other topics and some material is missing. It might be a good idea to get yourself a copy of this, if possible, especially if you are not a great lover of the heat section!

I2_Mechanics&Heat

Here are some more notes produced for Intermediate 2. There are some good questions here, but it does not cover all of the topic we are about to complete.

3779 Int 2

I will add some cut-outs and single page resources as we go through the course. If you lose yours, you will have to print them off yourself or take a photo!

Other Resources

N5 D&S Problem Booklet

N5 DS Past Paper Booklet

PhysicsCoursePhysicsofFlightLearner_tcm4-752866 PhysicsCoursePhysicsofFlightStaff_tcm4-752868 PhysicsCourseTelescopeLearner_tcm4-756621 PhysicsCourseTelescopeStaff_tcm4-756620

REVISION OF BGE TRANSPORT MATERIALS

Signature


Introduction to the Physics Dept

Welcome to National 5 Physics.

We hope you will enjoy the experience of learning Physics over the next year. This information gives you a clear idea of what you’ll complete during the course.

SURVIVING THE COURSE.

1. The structure of the Course.

The first thing to understand if you are to achieve your best in Physics at National 5, is to have a clear understanding of how the course is run. The course is made up of several parts; divided up in several ways.

There are six units and the Assignment (which changed for the session 2017-18):

  1. Waves
  2. Radiation
  3. Dynamics
  4. Space
  5. Electricity
  6. Properties of Matter
  7. Assignment (20% of the course covered in class but marked externally)

However, if you do units for N5, they have stayed as Dynamics and Spaces, Waves and Radiation and Electricity and Energy so there is quite a bit of overlap in the units

The topics covered in each unit are given below:

  1. Dynamics – vectors and scalars; velocity–time graphs; acceleration; Newton’s laws; energy; projectile motion.
  2. Space – space exploration; cosmology.
  3. Electricity-electrical charge carriers; potential difference (voltage); Ohm’s law; practical electrical and electronic circuits; electrical power.
  4. Properties of matter –specific heat capacity; specific latent heat; gas laws and the kinetic model.
  5. Waves – the topics covered are: wave parameters and behaviours; electromagnetic spectrum; refraction of light.
  6. Radiation –is nuclear radiation.

You will have a set of Learning Outcome Questions to complete, containing what you have to know for the exam.

The SQA states that the Assignment and Exam will test:

  • knowledge and understanding of physics by making accurate statements
  • knowledge and understanding of physics by describing information and providing explanations and integrating knowledge
  • applying physics knowledge to new situations, interpreting information and solving problems
  • planning or designing experiments to test given hypotheses or to illustrate particular effects, including safety measures
  • carrying out experimental procedures safely
  • selecting information from a variety of sources
  • presenting information appropriately in a variety of forms
  • processing information (using calculations and units, where appropriate)
  • making predictions based on evidence/information
  • drawing valid conclusions and giving explanations supported by evidence/justification
  • evaluating experimental procedures
  • suggesting improvements to experiments/practical investigations
  • communicating findings/information

In summary the course will be completed in the following order:

  • Maths and Intro
  • Waves
  • Dynamics
  • Radiation or Electricity
  • Electricity or Radiation
  • Assignment
  • Properties of Matter
  • Space
  • The exam

2. The Need to Know Booklet and organising you work.

Currently, all the information you need to pass the exam is highlighted in the Compendium. Check this every lesson and note your progress through the course, ensure you understand what you need to know.

Eventually, we hope to produce a set of Learning Outcome Questions, the answers will provide you with a perfect set of revision notes. These should be answered clearly and concisely in your Notes. Either copy out each question or print the questions and stick these in your notes. Then others can test you.  Alternatively, you can make these into flash cards.

Another hint is to make your work as colourful and neat as possible. This is going to form your most important work so take care of it. If it is bright, colourful, well presented and laid out it will be easy to revise from. Hand in your notes regularly for checking.

At the back of the notes jotter keep a list of all of your quantities etc. in a table like the one below. These are also in the compendium.

Quantity, Symbol, Unit, Unit Symbol N5-AH

NHAPhysical Quantity symUnitUnit Abb.
5absorbed dose D gray Gy
5absorbed dose rate H (dot)gray per second gray per hour gray per year Gys-1 Gyh -1 Gyy-1
567acceleration a metre per second per second m s-2
567acceleration due to gravity g metre per second per second m s-2
5activity A becquerel Bq
567amplitude A metre m
567angle θ degree °
567area A square metre m2
567average speedv (bar)metre per second m s-1
567average velocity v (bar)metre per second m s-1
567change of speed ∆v metre per second m s-1
567change of velocity ∆v metre per second m s-1
5count rate - counts per second (counts per minute) -
567current I ampere A
567displacement s metre m
567distance dmetre, light year m , ly
567distance, depth, height d or h metre m
5effective dose H sievert Sv
567electric charge Q coulomb C
567electric charge Q or q coulomb C
567electric current I ampere A
567energy E joule J
5equivalent dose H sievert Sv
5equivalent dose rate H (dot)sievert per second sievert per hour sievert per year Svs -1 Svh-1 Svy -1
567final velocity v metre per second m s-1
567force F newton N
567force, tension, upthrust, thrustF newton N
567frequency f hertz Hz
567gravitational field strength g newton per kilogram N kg-1
567gravitational potential energy Epjoule J
5half-life t1/2 second (minute, hour, day, year) s
56heat energy Eh joule J
567height, depth h metre m
567initial speed u metre per second m/s
567initial velocity u metre per second m s-1
567kinetic energy Ek joule J
567length l metre m
567mass m kilogram kg
5number of nuclei decayingN - -
567period T second s
567potential difference V volt V
567potential energy Ep joule J
567power P watt W
567pressure P or p pascal Pa
5radiation weighting factor wR- -
567radius r metre m
567resistance R ohm Ω
567specific heat capacity c joule per kilogram per degree Celsius Jkg-1 °C -1
56specific latent heat l joule per kilogram Jkg -1
567speed of light in a vacuum c metre per second m s -1
567speed, final speed v metre per second ms -1
567speed, velocity, final velocity v metre per second m s-1
567supply voltage Vsvolt V
567temperature T degree Celsius °C
567temperature T kelvin K
567time t second s
567total resistance Rohm Ω
567voltage V volt V
567voltage, potential difference V volt V
567volume V cubic metre m3
567weight W newton N
567work done W or EWjoule J
7angle θ radian rad
7angular acceleration aradian per second per second rad s-2
7angular displacement θ radian rad
7angular frequency ω radian per second rad s-1
7angular momentum L kilogram metre squared per second kg m2 s -1
7angular velocity,
final angular velocity
ω radian per second rad s-1
7apparent brightnessbWatts per square metreWm-2
7back emfevolt V
67capacitance C farad F
7capacitive reactance Xcohm W
6critical angle θc degree °
density ρ kilogram per cubic metre kg m-3
7displacement s or x or y metre m
efficiency η - -
67electric field strength E newton per coulomb
volts per metre
N C -1
Vm -1
7electrical potential V volt V
67electromotive force (e.m.f) E or ε volt V
6energy level E 1 , E 2 , etcjoule J
feedback resistance Rfohm Ω
focal length of a lens f metre m
6frequency of source fs hertz Hz
67fringe separation ∆x metre m
67grating to screen distance D metre m
7gravitational potential U or V joule per kilogram J kg-1
half-value thickness T1/2 metre m
67impulse (∆p) newton second
kilogram metre per second
Ns
kgms-1
7induced e.m.f. E or ε volt V
7inductor reactanceXLohm W
7initial angular velocity ω oradian per second rad s-1
input energy E ijoule J
input power Piwatt W
input voltage V 1 or V2 volt V
input voltage V ivolt V
6internal resistance r ohm Ω
67irradiance I watt per square metre W m-1
7luminoscityLWattW
7magnetic induction B tesla T
7moment of inertia I kilogram metre squared kg m2
67momentum p kilogram metre per second kg m s-1
6number of photons per second per cross sectional area N - -
number of turns on primary coil n p- -
number of turns on secondary coil n s- -
6observed wavelengthλ observedmetrem
output energy E o joule J
output power P owatt W
output voltage V o volt V
6peak current Ipeak ampere A
6peak voltage V peak volt V
7phase angle Φ radian rad
67Planck’s constant h joule second Js
7polarising angle
(Brewster’s angle)
i pdegree ̊
power (of a lens) P dioptre D
power gain Pgain - -
7Power per unit areaWatts per square metreWm-2
primary current I p ampere A
primary voltage Vpvolt V
7radial acceleration ar metre per second per second m s-2
6redshiftz--
67refractive index n - -
6relativistic lengthl'metrem
6relativistic timet'seconds
rest mass mo kilogram kg
6rest wavelengthλrestmetrem
6root mean square current I rmsampere A
6root mean square voltage Vrmsvolt V
7rotational kinetic energy Erotjoule J
7schwarzchild radiusrSchwarzchildmetrem
secondary current Is ampere A
secondary voltage Vsvolt V
7self-inductance L henry H
67slit separation d metre m
7tangential acceleration atmetre per second per second m s-2
6threshold frequency fohertz Hz
7time constanttseconds
7torque Τ newton metre Nm
7uncertainty in Energy∆E jouleJ
7uncertainty in momentum∆px kilogram metre per second kgms-1
7uncertainty in position∆x metre m
7uncertainty in time∆t seconds
6velocity of observer vometre per second m s-1
6velocity of source vsmetre per second m s-1
voltage gain - - -
voltage gain Ao or V gain - -
567wavelengthλmetrem
6work functionWjouleJ

Your formulae should also be in the notes section. Keep the list up to date! Each time that you learn a new formula put this in your notes. Make sure you include units, symbols and the meaning of each letter. Check that you can rearrange the formula to find any missing quantity.

The work that you do in class should usually be written in your class work jotter. Date all work and record a title for each activity. Sometimes notes will go straight into your notes jotter, so you must have this with you every lesson.

You will also keep a profile of your performance in your profile section. This should start with your contract (see the end of this post), profile of you and an introduction About Yourself. This will help us to gain a good understanding of how you function. You will need to set targets each month on how you can improve your performance or maintain your performance at the current level, if it really is the best you can deliver. We will also try to tailor some of the tasks to items that interest you and assist you in meeting these targets. All progress that you make should be recorded in this jotter and it would be helpful to discuss these targets with folk at home. Include a progress bullseye chart each month like the one below, electronic copies can be downloaded from the links below too.

bullseye

bullseye    

The main reason we use the pupil profile is to give you the chance to discuss with your teacher, at your leisure, any concerns, worries or problems you might have. This is not to prevent you from talking directly to your teacher, but it gives you the opportunity to enter into a dialogue with your teacher at a time that is convenient to you both. This will become part of your homework on a monthly basis. Your pupil profiles should be handed in on the first lesson of every month. Get into the routine of handing this in. Please mark in your student planners that this homework is due on the first Physics lesson of every month. Obviously, if you wish to hand this in more often you may do so, in fact hand this in whenever you have a concern. Your teacher will record and note any concerns and comments and deal with these as soon as possible. This may be in the form of additional work, additional help or additional resources.  But don’t forget your pupil profiles can also tell us when you’re really happy with the course, enjoying it and feel that you are making good progress. Don’t rush your response, but engage with how you can improve and what areas you feel are your weakest and strongest.

3. Follow the Rules & Routines & Bring Equipment

The five rules of the Physics Department are for pupils follow to ensure a pleasant and safe environment.

  1. Follow the teacher’s instructions.
  2. Raise your hand, and wait for permission before speaking.
  3. Allow people to get on with their work.
  4. Follow the laboratory rules
  5. No put downs. (or only say positive things about people).

Remember Science is about trial and error and looking for ways to fix mistakes, what a better example for life!

ROUTINES

In addition to the core rules the following routines are expected of pupils during their time in this department. Pupils should:

  1. Enter the room quietly, calmly and on time;
  2. Come prepared for the work with jotters and pen or pencil etc.;
  3. Complete all homework and hand it in on time;
  4. Not deface jotters, desks folders, etc.;
  5. Pay attention;
  6. At the end of a lesson, when told to do so, pack away quietly, place stools under the desk and leave in an orderly manner.

3.  Homework and Review

You will be expected to complete all the homework set and hand it in on time. We will contact parents/carers if we think you are not completing this vital part of the course. We do not issue homework because we want you to spend all your life working, but because it gives you the opportunity to consolidate the work completed in class. It has been proved that students who complete homework do better in their exams.

 4. The Timeline

You will be issued with a timeline. This may be on a monthly, weekly or termly basis. This will show you what homework you will have to do, where on the course you are and when assessment dates are likely to be. We may have to update this through the year but it should be used to plan study and work. Don’t waste it, use it!

 5. ASK!

If you do not understand any aspect of the course or work and you have read through the material at home then ask. Both members of the Department (Mrs Physics and Ms Horn) are willing to help you with your work.

 6. Equipment

This is a list of the equipment you need to bring to Physics

  • Pen
  • Pencil
  • Ruler (30 cm)
  • Eraser
  • Protractor or angle measurer.
  • Scientific calculator, nothing fancy but it must be capable of doing scientific functions. Most pupils find it easier to use a Casio DAL, S-VPAM calculator, particularly the Casio FX83 or Casio FX85. With these calculators you enter the numbers into the calculator in the manner in which they are written. There is a post in the maths section giving you some example of how to work your calculator and I’ll add a few more hints later in the year.

Pupils will be issued with

  • A classwork jotter for practice and results
  • A notes jotter
  • A homework / profile jotter
  • An A5 Content booklet containing the Content Requirements, Relationships’ Sheet, Periodic Table and a few maths hints. This should be brought to every lesson and used every night to check content coverage and for revision and review. This can be kept at the end of the course as it will be covered in student writing.
  • Students will receive topic booklets with content and questions. These should be returned at the end of the course.

7. Take Responsibility for your Learning

Sometimes there may be a distraction in the classroom that is out of our control. Make sure that you use your time wisely if there is a distraction. Check and complete one or more of the activities listed below.

  • Finish off the work that has been set.
  • Complete Learning Outcome Questions/ Summary of content statements.
  • Check off the content covered in the Vital Booklet (good name needed)
  • Write out a summary of what you have been doing.
  • Read through the work that we have been covering.
  • Read through the next section of work to prepare.
  • Revise/ Learn your formulae
  • Produce a revision test for the class.

Your work is in your hands. This is time that can be used or abused. If you abuse your time now you will have to use your free time later. SPEND YOUR TIME WELL.

8. Layout for Tackling Mathematical Problems

Always set out maths problems using the structure given below. It may seem to take longer but it will save time in the long run as it makes the question clearer.

USE IESSUU

http://www.youtube.com/watch?v=u7akhlAS5Ck

  1. Information– Summarise the question by writing down what you know from the information given. Use the letter that goes with the quantity and this will help you be able to work out the correct formula
  2. Equation – write down the equation as it occurs in the data sheet. Do not attempt to rearrange it before substituting.
  3. Substitution – put the numbers into the equation as they appear in the formula
  4. Solution – work out the answer. You are ALWAYS allowed to use a calculator
  5. Units– you will need to use the correct units so will need to learn these. No or wrong units no mark for the answer
  6. Underline – underline with 2 lines the answer to make it clear what is your final answer.

In short:

  1. (Information)- Summarise the question.
  2. Change any units that are not standard.
  3. (Equation) -Write out the formula.
  4. (Substitution) -Put the numbers in.
  5. Use the magic triangle to rearrange the formula, only if you must!
  6. (Solution)- Work out the answer.
  7. Write out the answer, but not to too many sig fig.
  8. (Units) -Add units to your answer.
  9. (Underline) Underline the answer.

http://www.mrsphysics.co.uk/usefullinks/general-marking-principles/

http://www.sqa.org.uk/sqa/files_ccc/Physicsgeneralmarkingprinciples.pdf

9. Revising The Syllabus

REVISING- Here are some really important ideas to help you with your revision (which shouldn’t just take place the night before a test but should be an ongoing process).

Find out:

  • Make a Revision Calendar (I’ve made one for you Click Here! The instructions can be found in the Revision section)
  • Stick a large calendar next to where you study.
  • Mark in the dates and times of Exams (whether prelims or final exams). A countdown timer is on the N5 Home Page.
  • Shade in the dates and times of other commitments.
  • Make a list of topics to cover for each subject.
  • Calculate how many hours you have available and how much time you will allocate to each subject.
  • Decide on the order in which to tackle your subjects. Don’t tackle the easy subjects first as you’ll never get on to the harder ones! It is best to start revising the hard subjects and topics as these will take you more time to learn
  • Draft your revision timetable.
  • Leave one or two revision slots free each week for extra revision or difficult topics.
  • BE SURE TO LEAVE YOURSELF SOME TIME FOR REST AND FUN ACTIVITIES including being healthy.
Working in Revision Groups
This can be useful but:
  • Discipline is needed
  • Decide before you meet on the topic that you’ll cover e.g. prepare revision cards or answer past paper questions.
  • Teach each other a topic
  • Take an ACTIVE APPROACH to your Revision
  • Talking with others about what to revise can lessen the anxiety.
  • Before starting a Session decide HOW  and WHAT to revise 

DON’T JUST SIT THERE READING AND RE-READING YOUR NOTES.

A STEP BY STEP REVISION STRATEGY

  • FIND A FOCUS
  • MAKE REVISION CARDS
  • TEST YOURSELF
  • LEARN IT!
  • TEST YOURSELF
  • CHECK IT!

10. Relax

Believe it or not we also expect you to make sure you relax. Relaxation should be in proportion. Too much and you won’t finish the work, too little and you will not function properly; balance is important. Make sure that your relaxation includes plenty of exercise and fresh air. Don’t just vegetate in front of something electrical.

Now you have your survival guide may we wish you all the best and hope you perform Physics to the best of your ability, whatever that standard!

Remember we are a TEAM! It is not YOU ALONE! It will be most effective if YOU, ME and PEOPLE FROM HOME can all work together to support you through the next nine months. We each have a role to play. I need to explain what we need to do in the best way I can, and ensure you know the course content. Your role is to listen well in class, learn what you are taught, ask if you have not understood what you’ve been taught and review and revise little and often. Tell me if you are finding the work hard so that I can give you additional support. People at home are there to support and encourage you in your work and if possible test you on your learning, (provided you’ve laid it out as well as possible).

After a Test

It is important that you review your performance after a test. One way to do that is through a Thinking about Revising Sheet.

Thinking about revising  this is the pdf version

Thinking about revising this is the word version

Here is the link to the SQA N5 Physics website

Signature

Monthly Progress Chart

Each month, (handing in your jotter on the first Physics period of the month), give an update on how you feel you’re getting on in Physics, reassess your targets and check through your progress. You ought to be able to tackle new past paper questions every month. For the first Progress Chart answer the questions contained in the profile below and write out the expectations and sign these.

pupil profile jotter word

pupil profile jotter pdf

PUPIL PROFILE

Name:

Date of Birth: 

Register Class:     

Registration Room:

Register Teacher: 

Pupil Support Teacher:

House: 

Previous Physics Grade: 

Maths Class: 

Maths Teacher:

Approx. level Maths: N3, N4, N5

English Class: 

English Teacher:

Approx. level English: N3, N4, N5.

Other subjects taken:

1

2

3

4

5

About myself

Tell us a little bit about yourself so that we can make the work as relevant to you as possible. Include things like

  •         where you live,
  •         the other people in your family,
  •         what your hobbies are,
  •         what you most like doing,
  •         how you spend your time outside school.

You could also include what kind of career you would like to have, what your goals are in life, and why you chose to take Physics.

Target Setting

During my time in Physics I want to achieve the following targets.

Expectations

I …{insert your name}

will always do my best in N5 Physics

I will work hard in class, and follow the classroom code.

I will look over the work I have done each evening, and I complete each piece of homework and hand it in on time.

If I am absent I will catch up on the missed work and homework and ask if I am stuck.

I will ask my teacher for help when I am having difficulties, and will not give up.

I will show my homework to my parents when completed.

signed (you)

(and your parent/guardian to show that they have seen this)

Best Wishes for a lovely journey through N5 Physics

Signature

Intermediate II Papers

Intermediate 2 Physics Papers

Here are the Intermediate 2 Physics Papers. The table isn’t yet complete, but you might want to start looking over some questions. Many of these could pop up on National 5 papers.

Int 2 PapersYearMarking
Instructions
Exam
Reports
Int2 20152015MI 2015
Int2 20142014MI 2014
Int2 20132013MI 2013I2 Report 2013
Int2 20122012MI 2012I2 Report 2012
Int2 20112011MI 2011I2 Report 2011
Int2 20102010MI 2010I2 Report 2010
Int2 20092009MI 2009I2 Report 2009
Int2 20082008MI 2008I2 Report 2008
Int2 20072007MI 2007I2 Report 2007
Int2 20062006MI 2006I2 Report 2006
2006 H/Int2 stats
Int 2 20052005MI 2005I2 Report 2005
Int2 20042004MI 2004I2 Report 2004
Int2 20032003MI 2003I2 Report 2003
Int2 20022002MI 2002I2 Report 2002
Int2 20012001MI 2001
Int2_Physics_20002000MI 2000
Int2 SpecimenSpecimenSpecimen Answers
READ THIS
FIRSTMARK GUIDE
january 2021
Signature

SG Physics Paper

SG Physics Papers

As well as the National 5 Physics Papers above I’ve added some Standard Grade Physics Papers.

My thanks to J Boyle for passing these on. They are really good practice for students to use for revision for N4/5 etc. Thanks to Iain Glennie for some of the early answers (it’s not because I couldn’t do them), he just got there first!

CREDIT PAPERS

PaperYearM.I.Exam Report
SG(C) 20132013SG(C) 2013 MI2013 Report
SG(C) 20122012SG(C) 2012 MI2012 Report
SG(C) 20112011SG(C) 2011 MI2011 Report
SG(C) 20102010SG(C) 2010 MI2010 Report
SG(C) 20092009SG(C) 2009 MI2009 Report
SG(C) 20082008SG(C) 2008 MI2008 Report
SG(C) 20072007SG(C) 2007 MI2007 Report
SG(C) 20062006SG(C) 2006 MI2006 Report
SG(C) 20052005SG(C) 2005 MICredit 2005
2005 Report
SG(C) 20042004SG(C) 20042004 Report
SG(C) 20032003SG(C) 20032003 Report
SG(C) 20022002SG(C) 20022002 Report
SG(C) 20012001SG(C) 2001
SG(C) soln 00-04
SG(C) 20002000SG(C) soln 00-04
SG(C) 19991999SG(C) soln 95-99 pdf
SG(C) 19981998SG(C) 1998 MI
SG(C) 19971997SG(C) soln 95-99 pdf
SG(C) 19961996SG(C) soln 95-99 pdf
SG(C) 19951995SG(C) soln 95-99 word
SG(C) 19941994SG(C) soln 90-94 pdf
SG(C) 19931993SG(C) soln 90-94 pdf
SG(C) 19921992SG(C) soln 90-94 pdf
SG(C) 19911991SG(C)red soln 90-94 word
SG(C) 19901990SG(C) soln 90-94 pdf

GENERAL PAPERS

PaperYearM.I.Exam Reports
SG(G) 20132013SG(G) 2013 MI2013 Report
SG(G) 20122012SG(G) 2012 MI2012 Report
SG(G) 20112011SG(G) 2011 MI2011 Report
SG(G) 20102010SG(G) 2010 MI2010 Report
SG(G) 20092009SG(G) 2009 MI2009 Report
SG(G) 20082008SG(G) 2008 MI2008 Report
SG(G) 20072007SG(G) 2007 MI2007 Report
SG(G) 20062006SG(G) 2006 MI2006 Report
SG(G) 20052005SG(G) 2005 MI2005 Report
SG(G) 20042004SG(G)2004 2004 Report
SG(G) 20032003SG(G) 20032003 Report
SG(G) 20022002SG(G) 1998
SG(G) 2002
2002 Report
SG(G) 20012001SG(G )2001
SG(G) soln 00-04
SG(G) 20002000SG(G) 2000
SG(G) soln 00-04
SG(G) 19991999SG(G) 1999
SG(G) soln 95-99
SG(G) 19981998SG(G) soln 95-99
SG(G) 19971997SG(G) soln 95-99
SG(G) 19961996SG(G) soln 95-99
SG(G) 19951995SG(G) soln 95-99
SG(G) 19941994SG(G) soln 90-94
SG(G) 19931993SG(G) soln 90-94
SG(G) 19921992SG(G) soln 90-94
SG(G) 19911991SG(G) soln 90-94
SG(G) 19901990SG(G) soln 90-94

SG Past Papers

Signature

Cosmology & Space Exploration

Newton’s 3rd Law on the ISS

Lockerbie Academy’s Faulkes Telescope Pictures Some of Lockerbie Academy’s Faulkes Telescope pictures taken by students in the school from 2007.

Here are the posters produced by N5 (2016-2017) They answer the questions posed in the research task document below which was created from the Full Content Check 2016. Check them out. There are still a few to come and some need to be updated. If yours isn’t here then let me know and we’ll update.

research tasks as a pdf file

research tasks as a doc file

Gravity Assist

In orbital mechanics and aerospace engineering, a gravitational slingshot, gravity assist manoeuvre, or swing-by is the use of the relative movement (e.g. orbit around the Sun) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft. This saves fuel, time, and expense. Gravity assistance can be used to increase or decrease its speed or redirect the path of a spacecraft. The “assist” is provided by the motion of the gravitating body as it pulls on the spacecraft. It was used by interplanetary probes from Mariner 10 onwards, including the two Voyager probes’ notable flybys of Jupiter and Saturn.

A gravity assist around a planet changes a spacecraft’s velocity (relative to the Sun) by entering and leaving the gravitational field of a planet. The spacecraft’s speed increases as it approaches the planet and decreases while escaping its gravitational pull. Because the planet orbits the sun, the spacecraft is affected by this motion during the manoeuver. To increase speed, the spacecraft flies with the movement of the planet (taking a small amount of the planet’s orbital energy); to decrease speed, the spacecraft flies against the movement of the planet. The sum of the kinetic energies of both bodies remains constant.

Gravity Assist

Open Ended Space Question

  1. From your knowledge of energy, what might a space exploration scientist consider when sending a machine to land safely on an extra terrestrial body? The machine must be capable of sending back some intelligible data
  2. Two people are discussing satellite motion one person says:
    “Satellites stay in motion because there is no gravity”
    Using your knowledge of Physics comment on that response.
  3. An astronaut on the international space station was quoted as saying:
    “I sometimes feel like a human cannon ball.”
    Using your knowledge of physics explain why he is like a cannon ball in space.
  4. Recently Voyager 1, one of the first space probes launched by NASA in 1977, has now left our Solar System.
By Voyager_Path.jpg: created by NASAderivative work: Hazmat2 (talk) – Original from http://solarsystem.nasa.gov/multimedia/display.cfm?IM_ID=2143This file was derived fromVoyager Path.jpg:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=18049439

EITHER: Using your knowledge of physics, explain how this space probe was able to reach the outer planets.

OR: Using your knowledge of physics, explain how NASA might know that the probe has now left our Solar System.

OR: Using your knowledge of physics, comment on what happens next to this space probe.

5. A daytime newsreader commented that, “Looking at the stars is like looking back in time.” Use your knowledge of physics to comment on the journalist’s statement.

6. There are many parts of space that are detected by different types of telescope. Use your knowledge of physics to describe one telescope that is used in astronomy.

7. A ball rolls off from a table as shown.

Use your knowledge of physics to comment on what the ball’s horizontal distance from the edge of the table would and would not depend on.

8. A velocity-time graph of skydiver 1 is shown below

 

A velocity-time graph of skydiver 2is shown below

 Use your knowledge of physics to explain how the second skydiver’s velocity-time graph during descent compares with that of the first skydiver.

Signature

Updated 15/09/23


Mass, Weight and Weightlessness

Below is a link to an excellent website for you to check your learning about weight and weightlessness. It is probably just above N5 standard, so read through it slowly and carefully and ask if there is material you don’t understand.

http://www.physicsclassroom.com/class/circles/Lesson-4/Weightlessness-in-Orbit

How does ‘g’ change with height above the surface of the Earth?

Continue reading “Mass, Weight and Weightlessness”

Definitions for Space

These are some very basic definitions for the Space Topic

Universe: Sum total of everything that exists.
Galaxy: A basic building block of the universe that includes stars, star clusters, clouds of gas, dust and interstellar molecules.
Solar System: Is one or more suns surrounded by orbiting planets. Our solar system is composed of the sun, 9 known planets and at least 44 moons, thousands of “minor planets” (asteroids) meteors and perhaps billions of comets.
Sun: Dominant member of a solar system accounts 99% of the mass of the solar system. The sun is a giant star it produces heat and light. A big ball of plasma
Star: Principle components of galaxies. Living stars emit radiation across the electromagnetic spectrum.  Peak depends on the heat of the surface.
Planet: A relatively large body rotating in an elliptical orbit around a sun.
Moon: A natural satellite of a planet i.e. rotates around a planet. Moons do not produce their own light.
Mass: Mass is a measure of the amount of matter in an object. It is measured in kilograms. Wherever you go your mass stays the same.
Weight: Weight is the force of gravity acting on an object pulling it towards the centre of the Earth or any other large mass. Weight is a force and so is measured in Newtons. The weight of an object varies depending on where you are (which planet etc and how far you are from it’s surface, the further away from the surface the smaller is your weight)..
gravitational field strength : gravitational field strength, g, is the weight per unit mass. It is measured in Newtons per kilogram. It is the force of gravity or pull on each kilogram of mass.
Inertia: Inertia is the property of an object which makes it hard to get an object to move, or to stop a moving object. Inertia varies with mass, so the bigger your mass the bigger your inertia..
Acceleration due to gravity: All objects will acceleration due to gravity. On the Earth, close to the surface objects accelerate at 9.8 ms-2 .
Light year: The distance light travels in a year equivalent to 9.46 .
Light

Light does not travel at an infinite speed. It takes time to travel. It is so fast that we do not usually notice, although out in space the distances involved are so big that light takes a reasonable amount of time to reach us.

Light travels at: 3 × 108 ms -1

Given that it takes 8 minutes for light to get from the sun, how far is it away is it from the Earth?

8 × 60  = number of seconds in minutes  = 480s

Each second light travels 3 × 108m

d= v t

d= 3 × 108   × 480  = 1.44 ×1011m

How far does light travel in one year?

1 year  = 365days

365days  × 24 = 8760 hours

8760 ×60 × 60  = 31536000s in one year

Distance travelled in 1 year, d = v t

d = 3 × 108 × 31536000     = 9.46 × 1015 m in one year = one light year

The light year (ly) is the distance light travels in one year.

Light travels at 3 × 108 ms-1

Source Time taken for light

to reach us

Distance (m) Working
Moon 1.2 s 3.6 × 108 1.2 × 3 × 108
Sun 8 min 1.44 × 1011 480 × 3 × 108
Next nearest Star 4.3 y 4.07 × 1016 4.3 × 9.46 × 1015
Other side of galaxy 100 000 y 9.46 × 1020 100 000 × 9.46 × 1015
Andromeda galaxy 2 200 000 yr 2.08 × 1022 2 200 000 × 9.46 × 1015
Continuous Spectra

Many light sources produce a continuous spectrum containing all the wavelengths of visible light, e.g. an ordinary light bulb.

Line Spectra.

Some light sources emit only some wavelengths. They produce a line spectrum. Each line corresponds to a particular wavelength.

Each chemical element has its own line spectrum pattern(so it is like a finger print!)

Line spectra can be varied using a spectro-scope in the classroom.

Line spectra are used to tell us about the chemical composition of the stars.

 

 

Dynamics and Space Resources

New Dynamics and Space_2

N5 D&S Problem Booklet

Dynam & Space D&G PS Book

parachutes      parachutes

Projectile questions

Projectile questions

Projectile questions1

mass and weight

mass and weight

work done calculations

Latent Heat questions

Revision Questions

Use the pdf file, printed from a powerpoint presentation to practice work for the D&S topic. Some space has been left so that you can record your answers on the sheets. They are saved 6 slides to a page

Dynamics and Space Revision

Dynamics and Space Revision ANSWERS Don’t peek at the answers until you’ve finished going through the questions and created your own answers.

Resources from other schools

I would like to thank all the schools who have produced notes that are reproduced here. Know that I am really grateful. I have a half finished set of my own notes, but don’t think I can get them suitably done in time. Be assured that at least you’ll have some excellent higher notes next year, and after those scores I am expecting a big Higher class 2017-2018!

Dynamics and space part1

Dynamics and space part2

The above two booklets count as one!

N4 N5 Unit 1 Summary Notes[1]

N4 N5 Unit 1 Summary Notes[1] These are the same set of notes, one is in word, but for those that cannot read that the other is a pdf file, which you ought to be able to read.

D&S Summary Notes

The notes below would be combined into one booklet (the one at the end of this section)

N5 DS Mar 13 Dynamics Teacher notes

N5 DS Mar 13 Forces Pupil notes

N5 DS Mar 13 Forces Teacher notes

N5 DS Mar 13 Space Pupil notes

N5 DS Mar 13 Space Teacher notes

N5 DS Pupil material notes FINAL COPY 13th JUNE

N5 DS Pupil material notes FINAL COPY 13th JUNE

The booklet below is an Intermediate 2 booklet and contains some material for other topics and some material is missing. It might be a good idea to get yourself a copy of this, if possible, especially if you are not a great lover of the heat section!

I2_Mechanics&Heat

Here are some more notes produced for Intermediate 2. There are some good questions here, but it does not cover all of the topic we are about to complete.

3779 Int 2

I will add some cut-outs and single page resources as we go through the course. If you lose yours, you will have to print them off yourself or take a photo!

Other Resources

N5 D&S Problem Booklet

N5 DS Past Paper Booklet

PhysicsCoursePhysicsofFlightLearner_tcm4-752866 PhysicsCoursePhysicsofFlightStaff_tcm4-752868 PhysicsCourseTelescopeLearner_tcm4-756621 PhysicsCourseTelescopeStaff_tcm4-756620

REVISION OF BGE TRANSPORT MATERIALS

Space Junk! We’ve made a bit of a mess of our wonderful world!

Signature


Preferences