Potentiometers

A potentiometer is a type of VARIABLE RESISTOR where the voltage is divided up!

If the Formula for a series circuit

$$
\begin{array}{ll}
V_{s}=V_{1}+V_{2}+V_{3} & \text { etc } \\
I_{T}=I_{1}=I_{2}=I_{3} & \text { etc } \\
V=I \times R & \\
R_{T}=R_{1}+R_{2}+R_{3} & \text { etc }
\end{array}
$$

In a SERIES circuit the current through each resistor is the same. To find the current use the formula:
$\frac{V_{s}}{R_{T}}=I_{T} \quad$ Where
I_{T} is the current,
$R_{T}=R_{1}+R_{2}+R_{3}$,
$V_{s}=$ supply voltage

We already know that I_{T} is the same as the current going through R_{1}, R_{2}, R_{3} etc. So to find V_{1}, V_{2}, V_{3}, use:

$$
\begin{aligned}
& V_{s}=I_{T} \times R_{T} \\
& V_{1}=I_{T} \times R_{1} \\
& V_{2}=I_{T} \times R_{2} \\
& V_{3}=I_{T} \times R_{3}
\end{aligned}
$$

As I_{T} is the same

$$
I_{T}=\frac{V_{1}}{R_{1}}=\frac{V_{2}}{R_{2}}=\frac{V_{3}}{R_{3}}=\frac{V_{S}}{R_{T}}
$$

To find the voltage across resistors you do not need to work out the current.

$$
I_{T}=\frac{V_{1}}{R_{1}}=\frac{V_{2}}{R_{2}}=\frac{V_{s}}{R_{T}}
$$

Either work out by ratios (quick if you can do it but costly if it goes wrong!)

EITHER:

1. Summarise

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=30 \Omega \\
& \mathrm{~V}_{1}=?, \mathrm{~V}_{2}=?
\end{aligned}
$$

2. Find $R T$

Find $R_{T}=R_{1}+R_{2}$

$$
R_{T}=90+30=120 \Omega
$$

3. Find V_{1}

$$
\begin{array}{ll}
\frac{V_{S}}{R_{T}}=\frac{V_{1}}{R_{1}} & \frac{12}{120}=\frac{V_{1}}{90} \\
V_{1}=\frac{12 \times 90}{120} & V_{1}=9 \mathrm{~V}
\end{array}
$$

4. Find V_{2}
$\frac{V_{S}}{R_{T}}=\frac{V_{2}}{R_{2}} \quad \frac{12}{120}=\frac{V_{2}}{30}$
$V_{2}=\frac{12 \times 30}{120} \quad V_{2}=3 \mathrm{~V}$
5. Check
$V_{s}=V_{1}+V_{2}=9+3=12 \mathrm{~V}$
6. Summarise

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=30 \Omega \\
& \mathrm{~V}_{1}=?, \mathrm{~V}_{2}=?
\end{aligned}
$$

2. Find R_{T}

Find $R_{T}=R_{1}+R_{2}$
$R_{T}=90+30=120 \Omega$
3. Find I_{I}
$\frac{V_{S}}{R_{T}}=I_{T}=\frac{12}{120}=0.1 \mathrm{~A}$
4. Find V_{1}
$V_{1}=I_{T} R_{1}=0.1 \times 90=9 \mathrm{~V}$
5. Find V_{2}
$V_{2}=I_{T} R_{2}=0.1 \times 30=3 \mathrm{~V}$

6. Check

$$
V_{s}=V_{1}+V_{2}=9+3=12 \mathrm{~V}
$$

See Virtual int 2 or Virtual Higher (old) Physics for practice on this!

$$
\begin{gathered}
V_{1}=\frac{R_{1}}{\left(R_{1}+R_{2}\right)} \times V_{s}^{\text {ORUSE }} \\
V_{2}=\frac{R_{2}}{\left(R_{1}+R_{2}\right)} \times V_{s} \\
V_{2}=V_{s}-V_{1}
\end{gathered}
$$

FIND THE VOLTAGE DROP ACROSS BOTH RESISTORS.

1a) $3 \mathrm{~V}, 9 \mathrm{~V}$
b) $8 \mathrm{~V}, 2 \mathrm{~V}$,
c) $6 \mathrm{~V}, 18 \mathrm{~V}$
2a) $2.5 \mathrm{~V}, 0.5 \mathrm{~V}$
b) $0.375 \mathrm{~V}, 1.125 \mathrm{~V}$
c) $3.6 \mathrm{~V}, 2.4 \mathrm{~V}$
3a) $0.5 \mathrm{~V}, 1 \mathrm{~V}$
b) $4.5 \mathrm{~V}, 1.5 \mathrm{~V}$
c) $9 \mathrm{~V}, 3 \mathrm{~V}$

