

Physics

Dynamics and Space

Name_____

Class

Content Level 4

SCN 4-06a

By researching developments used to observe or explore space, I can illustrate how our knowledge of the universe has evolved over time.

SCN 4-07a

I can use appropriate methods to measure, calculate and display graphically the speed of an object, and show how these methods can be used in a selected application.

SCN 4-07b

By making accurate measurements of speed and acceleration, I can relate the motion of an object to the forces acting on it and apply this knowledge to transport safety.

SCN 4-16a

I have carried out research into novel materials and can begin to explain the scientific basis of their properties and discuss the possible impacts they may have on society.

SCN 4-20a

I have researched new developments in science and can explain how their current or future applications might impact on modern life.

SCN 4-20b

Having selected scientific themes of topical interest, I can critically analyse the issues, and use relevant information to develop an informed argument.

Speed, Distance, Time

Content National 4

Speed and acceleration

- Calculations involving the relationship between speed, distance, and time.
- Determination of average and instantaneous speed.
- Interpretation of speed-time graphs to describe motion including calculation of distance (for objects which are speeding up, slowing down, stationary and moving with constant speed.)Motion in one direction only.
- Use of relationship of acceleration, change in speed and time.

Relationship between forces, motion and energy

- The use of Newton's first law and balanced forces to explain constant speed, making reference to frictional forces.
- The use of Newton's second law to explain the movement of objects in situations involving constant acceleration.
- Calculations using the relationship between force, mass and acceleration in situations where only one force is acting.
- Calculations using the relationship between weight, mass and gravitational field strength within our solar system.
- Risks and benefits associated with space exploration including challenges of re-entry to a planet's atmosphere.
- o The use of thermal protection systems to protect spacecraft on re-entry.

Satellites

- The range of heights and functions of satellites in orbit around the earth, including geostationary and natural satellites.
- The dependence of period of orbit on height.
- The use of parabolic reflectors to send and receive signals.
- Use of the relationship between distance, speed and time applied to satellite communication.
- Range of applications of satellite including telecommunications; weather monitoring; the use of satellites in environmental monitoring.
- o The use of satellites in developing our understanding of the global impact of mankind's actions.

Cosmology

- o Description of planet, moon, star, solar systems, exo-planet, galaxy and universe.
- Scale of the solar system and universe measured in light years.
- Space exploration and its impact on our understanding of the universe and planet Earth.
- o Conditions required for an exo-planet to sustain life.

Dynamics and Space 4

Content National 5

Velocity and displacement — Vectors and scalars

- o Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy.
- Calculation of the resultant of two vector quantities in one dimension or at right angles.
- o Determination of displacement and/or distance using scale diagram or calculation.
- Use of appropriate relationships to calculate velocity in one dimension

Velocity-time graphs

- Velocity-time graphs for objects from recorded or experimental data.
- Interpretation of velocity-time graph to describe the motion of an object.
- Displacement from a velocity-time graph.

Acceleration

- Acceleration of a vehicle between two points using appropriate relationships with initial and final velocity and time of change.
- Acceleration from a velocity-time graph.

Newton's laws

- Applications of Newton's laws and balanced forces to explain constant velocity, making reference to frictional forces.
- Calculations involving the relationship between unbalanced force, mass and acceleration for situations where more than one force is acting.
- o Calculations involving the relationship between work done, unbalanced force and distance/displacement.
- Calculations involving the relationship between weight, mass and gravitational field strength during interplanetary rocket flight.
- Newton's second law and its application to space travel, including rocket launch and landing.
- o Newton's third law and its application to explain motion resulting from a 'reaction' force.
- o Use of Newton's laws to explain free-fall and terminal velocity

Projectile motion

- Explanation of projectile motion.
- o Calculations of projectile motion from a horizontal launch using appropriate relationships and graphs.
- o Explanation of satellite orbits in terms of projectile motion.

Content National 5

Space exploration

- Evidence to support current understanding of the universe from telescopes and space exploration.
- o Impact of space exploration on our understanding of planet Earth, including use of satellites.
- The potential benefits of space exploration including associated technologies and the impact on everyday life.
- Risks and benefits associated with space exploration, including challenges of re-entry to a planet's atmosphere.

Cosmology

- Use of the term 'light year' and conversion between light years and metres.
- Observable universe description, origin and age of universe.
- The use of different parts of the electromagnetic spectrum in obtaining information about astronomical objects.
- Identification of continuous and line spectra.
- Use of spectral data for known elements, to identify the elements present in stars.

<u>Example 1</u>

What is the speed of a car that travels 2880m in 60 seconds?

<u>Example 2</u>

What is the speed of a car which travels 6 kilometres in 4 minutes?

<u>Example 3</u>

How long does it take to travel 7125m at 75m/s?

Example 4

How far does a car travelling at 25m/s travel in 30 minutes?

Average Speed using Light Gates

Dynamics and Space 4

Speed, Distance, Time

Dynamics and Space 4

Speed, Distance, Time

Distance and Displacement

Direction

Direction can be given in two ways

1.

2.

Definition

A scalar quantity has

A vector quantity has

Scalar	Vector

Adding Vectors

Example 10

A dog walks 2m E followed by 0.5m E. What is it's displacement? (Scale = 2cm = 1m)

Example 11

A cat walks 2m W followed by 0.5m E. What is its displacement? (Scale = 2cm = 1m)

Example 13

A person walks 12m East followed by 5m North. What is their displacement from the starting point? (Scale 1cm = 1m)

Velocity

Example 16

A cyclist completes a 400m circuit of a track in a velodrome in 50s. What is their velocity? (Think very carefully!!)

Example 17

A plane flies South at 100m/s, but the wind blows at 10m/s East. What is the plane's velocity?

Example 18

A car travels 30m E, followed by 40m N. This takes 10s. What is its velocity?

Scale 1cm = 10m

Dynamics and Space ${\bf 5}$

Vectors and Scalars

Dynamics and Space 5

Velocity-Time Graphs

Dynamics and Space 5

Velocity-Time Graphs

Acceleration

Negative Acceleration

Acceleration

Example 26

A car accelerates from 20m/s to 80m/s in 12 seconds. Calculate the acceleration.

Example 27

An object travelling at 80m/s suddenly comes to a stop in 2 seconds Calculate the deceleration.

Dynamics and Space 5

Example 28

A trolley starts at rest and speeds up at $4m/s^2$ for 6 seconds. Calculate the final speed.

Example 29

A car travelling at 5m/s accelerates at $3m/s^2$ for 4s. What is its final speed?

Acceleration due to Gravity

<u>Example 30</u>

A stone is dropped off the edge of a cliff. It takes 6 seconds to hit the ground. What speed does it hit the ground at?

Dynamics and Space 5

Forces

Forces can do three things to an object. Change the -	
1.	
2.	
3.	

Measuring Force

Balanced Forces on the Move

Seatbelts

Friction

Definition -	
INCREASING FRICTION	DECREASING FRICTION

Example 31

Calculate the unbalanced force needed to accelerate a bike of mass 60kg at a rate of $4m/s^2$.

Example 32

Calculate the acceleration caused by a force of 300N acting on a 25kg mass.

Example 33

An object accelerates at 15m/s² when a force of 900N is applied. What was its mass?

Example 34

A boy pushes his sister downhill on her sledge with a force of 150N. The combined mass of the girl and sledge is 40kg. What is her acceleration?

Resultant Forces

In a tug-o-war the two sides each exert a force.

Example 35

A dog out for a walk sees a cat and tries to chase after it. It exerts a force of 75N forwards on the lead. If the child holding the lead can exert a force of 65N backwards - what will happen?

Resultant Forces

Example 36 A motorbike of mass 800kg has an engine force of 12,000N.Example 37 A car has an engine force of 5000N. Each of the four tyres has a frictional force of 50N with the road.What is the acceleration of the bike?If the mass of the car is 1200kg, what the acceleration?

Example 38

A boat engine is able to apply a force of 6000N. The boat has a mass of 500kg and accelerates at a rate of $10m/s^2$.

- (a) Calculate the size of the frictional force acting on the boat.
- (b) What will happen to this force if the barnacles grow on the hull over the summer

<u>Example 39</u>

A boat tows a barge with a force of 800N South. The tide exerts a force of 600N East. What is the effect of these forces on the barge?

Weight

Example 40

What is the weight of a person with a mass of 65kg (on Earth)

Example 41

What is the mass of an object which has a weight of 7200N on Earth.

Planet/Moon	'g' (N/kg)
Mercury	4
Venus	9
Earth	10
Mars	4
Jupiter	25
Saturn	10
Uranus	10
Neptune	12
Moon	1.6

<u>Example 42</u>

Find the weight and mass of a 75kg spaceman on

- a) Moon
- b) Mars

Example 43

A cyclist exerts a force of 200N when riding a bike a distance of 60m. How much work has she done?

Example 44

A battery powered model car has a motor which exerts a force of 1.5N over a distance of 25m. How much work does the motor do?

Example 45

A winch uses 750J of energy pulling a car 6m out of a ditch. What force is exerted on the car?

Example 46

How far can a football team tow a truck using a force of 1500N if their available energy is 22,500J ?

<u>Example 47</u>

After lift off a spacecraft of mass 6000kg applies its thruster rockets with a combined thrust of 480000N. What is the acceleration of the rocket?

<u>Example 48</u>

Stars - what are they?

Our Solar System

Light year Equivalent in Metres

Calculate the distance in metres, that light travels in one year. The speed of light in vacuum is $300\ 000\ 000$ m/s⁻.

Distances in Space

Exoplanets and Life Beyond Our Solar System

The Age of the Universe

Cosmologists estimate the age of the universe to be around 14 billion years, since the "Big Bang".

How do we Explore Space?

There are 3 main ways to explore space:

Re-entry to atmosphere

Projectile Motion

Example 49

A helicopter flying at 40m/s releases an aid package. It takes 3s to hit the ground.

Calculate:

- a) The horizontal speed when the package hits the ground
- b) The horizontal distance travelled
- c) The initial vertical speed
- d) The final vertical speed when it hits the ground.

Uses of Satellites

Period of a Satellite

Geostationary Satellite

Satellites

Navigation System (GPS)

<u>Example 50</u>

In addition to the speed of the signals, what other quantity must be known to calculate distance?

Example 51

A satellite is at a height of 150km. If the signal travels at 300,000,000m/s, how long will it take for the signal to travel from one ground station to the other?

Example 52

On Earth an astronaut has a weight of 550N. What is her weight in the Space Station?

Example 53

On Earth an astronaut has a weight of 550N. What is her mass in the Space Station?

Re-entry to atmosphere

Terminal Velocity

The Electromagnetic Spectrum in Astronomy

Telescopes

Radio Telescopes

Parkes Observatory, NSW, Australia

Very Large Array, New Mexico, USA

Radiations from Space

Radiation from Space

<u>Example 54</u> Some spectral lines of radiation from a distant star are shown below.
Spectral lines of radiation from distant star
The spectral lines of a number of elements are also shown.
Cadmium
Calcium
Krypton
Mercury
Use the spectral lines of the elements shown to identify which of these
elements are present in the distant star.

Dynamics and Space 5