PROJECTILE QUESTIONS

1.

- (a) What is a projectile?
- (b) What is special about its motion?
- (c) A projectile is fired horizontally at 100 ms⁻¹.
- (i) How long will it take it to travel a horizontal distance of 50m?
- (ii) What will be its vertical velocity when it hits the ground?
- (iii) What will be its average vertical speed?
- (iv) How far will it fall in the 50m?
 - 2. A ball rolls along a flat roof at 2 ms⁻¹ and rolls off the edge.
- (a) If it takes 1.5s to fall to the ground what is the speed on landing?
- (b) How high is the roof?
- (c) How far away from the base of the building will it land?
 - 3. Jordan the goalkeeper punches a football which has been kicked across his goal mouth. The football leaves his glove with a horizontal velocity of 11.5 m/s to the right and takes 0.80s to land on the pitch.

- (a) Describe the horizontal velocity of the football from the instant it is punched to the instant it lands.
- **(b)** Show, by calculation involving horizontal motion, that the **horizontal displacement** travelled by the football during the 0.8 s is 9.2 m to the right.
- (c) At the instant the football leaves Jordan's hand, the downward vertical velocity of the football is 0 m/s. Calculate the **downward vertical velocity** of the football as it lands.
- (d) From what height was the ball pitched?

4. The Physics Department's pet cat jumps horizontally to the right from a window ledge. The cat lands on the floor 0.36 s later. Its horizontal displacement is 1.8 m to the right.

- (a) During the jump, does the horizontal velocity of the cat increase, decrease or remain constant?
- **(b)** Show, by calculation involving horizontal motion, that the **horizontal velocity** of the cat just before landing is 5 m/s to the right.
- (c) What was the height of the window ledge?
- (d) At the instant the cat jumps from the window ledge, its downward vertical velocity is 0 m/s. Calculate the downward vertical velocity of the cat as it lands.
 - 5. Ellen's hand hits a volleyball from a point directly above the central net.

The volleyball leaves Ellen's hand with a horizontal velocity of 8.4 m/s to the right.

On leaving her hand, the volleyball follows a curved path, hitting the floor when its horizontal displacement is 6.3 m to the right.

- (a) Show, by calculation involving horizontal motion, that the **time** taken for the volleyball to travel from Ellen's hand to the floor is 0.75 s.
- **(b)** At the instant the volleyball leaves Ellen's hand, the downward vertical velocity of the volleyball is 0 m/s. Calculate the **downward vertical velocity** of the volleyball as it reaches the floor.
- (c) From what vertical height was the volleyball punched?

- 6. A rocket is fired horizontally from a cliff top at 40 m/s to the right. The rocket hits the sea below after 4 s.
- (a) What will be the rocket's horizontal component of velocity just before it hits the sea?
- (b) What will be the rocket's range (horizontal displacement)?
- (c) What will be the rocket's vertical component of velocity just before it hits the sea?
- (d) Sketch the velocity-time graph for the rocket's vertical motion.
- (e) Use the graph to determine the rocket's vertical displacement (the height of the cliff).
- 7. Fred kicks a football off a cliff with a horizontal velocity of 5 m/s to the right. The football lands on ground below the cliff 2.5 s later.
- (a) What will be the ball's horizontal component of velocity just before it hits the ground?
- (b) What will be the ball's range (horizontal displacement)?
- (c) What will be the ball's vertical component of velocity just before it hits the ground?
- (d) Sketch the velocity-time graph for the ball's vertical motion.
- (e) Use the graph to determine the ball's vertical displacement (the height of the cliff).
- **8.** Barney pushes a coin off a staircase. The coin's initial horizontal velocity is 0.5 m/s to the right. It hits the floor after 1.2 s.
- (a) What will be the coin's horizontal component of velocity just before it hits the floor?
- (b) What will be the coin's range (horizontal displacement)?
- (c) What will be the coin's vertical component of velocity just before it hits the floor?
- (d) Sketch the velocity-time graph for the coin's vertical motion.
- (e) Use the graph to determine the coin's vertical displacement (the height of the staircase).
- **9.** Wilma throws a dart horizontally at 8 m/s to the right.

The dart hits the floor after 0.6 s.

- (a) What will be the dart's horizontal component of velocity just before it hits the floor?
- (b) What will be the dart's range (horizontal displacement)?
- (c) What will be the dart's vertical component of velocity just before it hits the floor?
- (d) Sketch the velocity-time graph for the dart's vertical motion.
- (e) Use the graph to determine the dart's vertical displacement (the height it was thrown from).
- 10. Betty fires an arrow horizontally at 25 m/s to the right. The arrow hits the ground after 0.4s
- (a) What will be the arrow's horizontal component of velocity just before it hits the ground?
- **(b)** What will be the arrow's **range** (**horizontal displacement**)?
- (c) What will be the arrow's vertical component of velocity just before it hits the ground?
- (d) Sketch the velocity-time graph for the arrow's vertical motion.

- (e) Use the graph to determine the arrow's vertical displacement (the height it was fired from).
- 11. A stone thrown horizontally from a cliff lands 24 m out from the cliff after 3 s. Find:
- a) the horizontal speed of the stone.
- b) the vertical speed at impact.
- c) the resultant velocity on impact.
- 12. A ball is thrown horizontally from a high window at 6 ms⁻¹ and reaches the ground after 2s. Calculate:
- a) the horizontal distance travelled
- b) the vertical speed at impact.
- 13. An aircraft flying horizontally at 150 ms⁻¹, drops a bomb which hits the target after 8s.

Find:

- a) the distance travelled horizontally by the bomb
- b) the vertical speed of the bomb at impact
- c) the distance travelled horizontally by the aircraft as the bomb fell
- d) the position of the aircraft relative to the bomb at impact.
- 14. A ball is projected horizontally at 15 ms⁻¹ from the top of a vertical cliff. It reaches the ground 5 s later. For the period between projection until it hits the ground, draw graphs with numerical values on the scales of the ball's
- a) horizontal velocity against time
- b) vertical velocity against time
- c) From the graphs calculate the horizontal and vertical distances travelled.
- 15. In the experimental set-up shown below, the arrow is lined up towards the target.

As it is fired, the arrow breaks the circuit supplying the electromagnet, and the target falls downwards from A to B.

- a) Explain why the arrow will hit the target.
- b) Suggest one set of circumstances when the arrow would fail to hit the target (you must assume it is always lined up correctly).

- 16. An osprey flying horizontally at a speed of 15 ms⁻¹ drops the fish it is carrying in to the lake. The fish hits the water 2seconds later.
 - a) Sketch the path the fish took.
 - b) At what height was the osprey flying when it dropped the fish?
 - c) Assuming the osprey does not change its speed or direction, where is it in relation to the fish when it hits the water?
 - 17. (a) In 1971, a lunar module carrying two astronauts landed on the Moons surface. The gravitational field strength on the Moon is different from that on Earth.

- (i) What is meant by "gravitational field strength"? (1)
- (ii) The gravitational field strength at the surface of the Moon is 1.6 N/kg. What is the value of the acceleration due to gravity at the surface of the Moon? (1)
- (b) One of the astronauts played golf on the moon. The golf ball was struck horizontally from the edge of a steep crater. It landed 2 seconds later, 25 m away as shown in the diagram below.
- (ii) Calculate the vertical speed of the ball on landing. (2)
- iii) How would the horizontal distance travelled by a ball projected with the same horizontal speed from the same height on Earth compare with that on the Moon? Explain your answer.

 (3)
- 18. Martin kicks a football into the air at an angle of 30° to the ground. The ball hits the ground after 2 seconds.
- a) At what time did the ball reach its greatest height?
- b) What was the vertical component of the speed of the ball as it left Martin's foot?
- c) At what angle did it hit the ground?
- d) Sketch the path of the ball if it had a large air resistance.