

2002 Physics
Intermediate 2
Section A and B
Detailed Marking Instructions

Strictly Confidential

These instructions are **strictly confidential** and, in common with the scripts entrusted to you for marking, they must never form the subject of remark of any kind, except to Scottish Qualifications Authority. Finalised Marking Instructions will be published on SQA's website in due course.

Markers' Meeting

You should use the time before the meeting to make yourself familiar with the question paper, instructions and any scripts which you have received. Do **not** undertake any final approach to marking until **after** the meeting. Please note any points of difficulty for discussion at the meeting.

Note: These instructions can be considered as final only after the markers' meeting when the full marking team has had an opportunity to discuss and finalise the document in the light of a wider range of candidates' responses.

Marking

The utmost care must be taken when entering and totalling marks. Where appropriate, all summations for totals must be carefully checked and confirmed.

Where a candidate has scored zero marks for any question attempted, "0" should be entered against the answer.

Recording of Marks

The mark for each **question**, where appropriate, should be entered **either** on the grid provided on the back page of the answer book, **or** in the case of question/answer books, on the grid (if provided) on the last page of the book. Where papers assess more than one element, care must be taken to ensure that marks are entered in the correct column.

The **Total** mark for each paper or element should be entered (in red ink) in the box provided in the top-right corner of the front cover of the answer book (or question/answer book).

Always enter the Total mark as a whole number, where necessary by the process of rounding up.

The transcription of marks, within booklets and to the Mark Sheet should always be checked.

Markers are reminded that they must not write comments on scripts.

Physics Intermediate 2 2001 (contd.)

(ii) P = 20 D

(b) Difficulty in seeing objects a short distance from the eyes

OR

Eye not powerful enough to focus close objects on retina

OR

Eye focuses close objects behind retina

- 30. (a) 1.11×10^9 decays/disintegrations per second
 - (b) $H = 1.17 \times 10^{-3} \text{ Sy or } 1.17 \text{ mSy}$
 - (c) To ensure people are kept a safe distance from the source
- 31. (a) (i) To extract the heat energy
 - (ii) To slow down (fast) neutrons
 - (b) Some of the neutrons bombard other uranium nuclei and cause further fissions or splits. These fissions produce more neutrons and maintain the reaction process.
 - (c) (i) 28 ± 1 year
 - (ii) 76 ± 2 years
 - (iii) Any suitable storage method, e.g. underwater, in concrete, underground

Physics Intermediate 2 2002

E

Œ

Section A

- 1. B 2. I 4. C 5. A
 - A 6. B 9. A
- 7. C 8. B 10. B 11. B
- 12. A
- 13. C 14.
- 12. A 15. D
- 16. B 17. 19. D 20.
- 15. I 18. E
- 19. D 20

Section B

- **21.** (a) $E_p = 3355000 J$
 - (b) (i) $E_w = 76600000 J$
 - (ii) P = 42560 W
 - (c) Potential energy lost by descending capsules
- 22. (a) horizontal motion is constant speed vertical motion is (constant) acceleration
 - OR Speed increasing
 - **OR** Faster
 - OR Acceleration due to gravity
 - OR Force of gravity
 - OR Pull of gravity
 - OR Weight

22. (contd.)

- (b) (i) Speed = 8 m/s
 - (ii) Light gate (at exit of firing device)
 diameter of ball measured
 time for ball to cut light beam measured
 speed = diameter

OR speed = $\frac{\text{distance}}{\text{time}}$

if distance previously specified

- (iii) Distance = 0.313 m
- (c) v = 11.2 m/s
- 23. (a) $a = 1.5 \text{m/s}^2$
 - (b) Friction force = 15 250 N
 - (c) Greater air resistance on bales
 OR
 Greater air friction on bales
 frictional force will reach 15 250 N
 at lower speed
- **24.** (a) $N_s = 200$
 - (b) E = 4500 J
 - (c) $E_H = 4053 J$
 - (d) Heat (energy) lost to surroundings/air/atmosphere/heating element
 - (e) Heat → electrical
- 25. (a) (i) $V_1 = 1.8 \text{ V}$ $V_2 = 1.2 \text{ V}$
 - (ii) $V_S = 3.0 \text{ V}$
 - (b) $R = 3000 \Omega$
 - (c) Light intensity is decreasing V₁ is increasing

Resistance (of LDR) is increasing V₂ is below 0.7 V between 20 s and 50 s

- (d) V₂ is below 0.7 V between transistor is switched off
- **26.** (a) I = 0.174 A
 - (b) $R = 1323 \Omega$
 - (c) Position 1
 Maximum voltage (across motor)
 OR

Maximum current (in motor)

OR

230 V (across motor)

OR

No extra resistance to decrease current

- (d) $R = 200 \Omega$
- 27. (a) Movement of coil in magnetic field OR
 Movement of coil near magnet change in direction of coil ⇒ a.c.
 - (b) Greater number of turns in the coil stronger magnet/magnetic field **OR**
 - more powerful magnet
 - (c) Gain = 250

Sample Answer and Mark Allocation		Notes	Marks	
21. (a)	$E_p = mgh$	(1)		
	$E_p = 2750 \times 10 \times 122$	(2)		
	$E_p = 3355000 J$	(1) (1)		2
(b)	(i) $E_w = F d$	(1)		
	$E_{w} = 200000 \times 383$	(2)		
	$E_w = 76600000J$	()) ())		2
	(ii) $E_s = Pt$	(1)		
	$76600000 = P \times 180$	00 (3)		
	$P = 42560 \mathrm{W}$	(1) (1)	$43000\mathrm{W} \rightarrow 42556\mathrm{W}$	2
	potential energy lost (1) by descending capsules (1) If in $(b)(i)$ 200 N used the			2 Total 8
NOTE	$P = 43 \text{ W} \rightarrow 42.556 \text{ W}$			iotai o
NOTE:	If in (b)(ii) 30 used for t P = 2553333 W	ime this will give		
	Deduct ½ for arithmetic			
	Deduct for significant	figures		
				Ş
	,			

e Answer and Mark Allocation	Notes	Mark
horizontal motion is constant speed (1)		
vertical motion is (constant) acceleration (1) OR speed increasing OR faster		
OR acceleration due to gravity OR force of gravity OR pull of gravity OR weight		2
(i) 8 m/s (1) OR (0)		1
(ii) light gate (at exit of firing device) (1)		
diameter of ball measured (1)		
time for ball to cut light beam measured (3)		
speed = $\frac{\text{diameter}}{\text{time}}$ (1)		
$\mathbf{OR} \text{ speed } = \frac{\text{distance}}{\text{time}}$		
if distance previously specified		3
(iii) distance = area under graph (3)		
distance = $\frac{1}{2} \times 0.25 \times 2.5$	<u></u>	2
distance = 0.313m (1)	$0.3\mathrm{m} \to 0.3125\mathrm{m}$	2
d = v t (2)		
$2.8 = v \times 0.25$ (3)		
v = 11.2 m/s (3)		2
,		Total 10
;: -		
2 light gates gives zero marks		
If computer used then all inputs to the computer (diameter, time) must be mentioned.		
	horizontal motion is constant speed (1) vertical motion is (constant) acceleration (1) OR speed increasing OR faster OR acceleration due to gravity OR force of gravity OR pull of gravity OR weight (i) 8 m/s (1) OR (0) (ii) light gate (at exit of firing device) (1) diameter of ball measured (2) time for ball to cut light beam measured (3) speed = diameter time if distance previously specified (iii) distance = area under graph (3) distance = ½ × 0·25 × 2·5 (3) distance = 0·313 m (3) (3) d = vt (3) 2·8 = v × 0·25 (3) v = 11·2 m/s (3) (3) : 2 light gates gives zero marks If computer used then all inputs to the computer (diameter, time) must be	horizontal motion is constant speed (1) vertical motion is (constant) acceleration (1) OR speed increasing OR faster OR acceleration due to gravity OR force of gravity OR pull of gravity OR weight (i) 8 m/s (1) OR (0) (ii) light gate (at exit of firing device) (1) diameter of ball measured (3) time for ball to cut light beam measured (3) speed = diameter time if distance previously specified (iii) distance = area under graph (3) distance = ½ × 0·25 × 2·5 (3) distance = 0·313 m (3) (3) d = vt (3) v = 11·2 m/s (3) (3) I gates gives zero marks If computer used then all inputs to the computer (diameter, time) must be

2002 i ilysics iliterificate 2		
Sample Answer and Mark Allocation	Notes	Mark
23. (a) $F = m a$		
$14250 (1) = 9500 \times a$		
$a = 1.5 \text{ m/s}^2$		3
(b) 15 250 N (1) OR (0)		1
(c) greater <u>air</u> resistance on bales (1) OR greater <u>air</u> friction on bales		
frictional force will reach 15 250 N at lower speed (1)		2
		Total
NOTES:		
a) Any other force value gives maximum formula mark.		
c) Accept greater wind resistance. Do not accept less aerodynamic		
less streamlined But linking less aerodynamic with more friction is ok.		

		1
		1772

2002 Physics	Intermediate 2
--------------	----------------

2002 I hysics intermediate 2		
Sample Answer and Mark Allocation	Notes	Marks
24. (a) $\frac{N_s}{N_p} = \frac{V_s}{V_p}$ (2) OR Turns ratio = $\frac{230}{25} = 9.2$ (1) $\frac{N_s}{1840} = \frac{25}{230}$ (2) $\frac{1840}{9.2} = 200$ (1) NOTE: $\frac{1}{2}$ unit deduction for wrong unit.		2
(b) $E = Pt$ (2) $E = 90 \times 50$ (2) E = 4500 J (2) (3)		2
(c) $E_H = c m \Delta T$ (2) $E_H = 386 \times 0.03 \times 350$ (2) $E_H = 4053 J$ (2) (2)		2
(d) heat energy lost (1) OR heat lost OR energy lost to surroundings (1) OR to air OR to atmosphere OR to heating element		2
(e) heat → electrical (1)	***************************************	1
NOTES: (d) Do not accept Not 100% efficient (e) Do not accept heat → electricity		Total 9

2002 Phy	sics	Interm	ediate	2
----------	------	--------	--------	---

2002 i ligoros iliterativados		
Sample Answer and Mark Allocation	Notes	Marks
25. (a) (i) $V_1 = 1.8 \text{ V}$ (2)		
$V_2 = 1.2 \text{ V} \qquad \textbf{(1)}$		1
(ii) $V_S = 3.0 \text{ V}$ (1) Must be sum of (a)(i) $\frac{1}{2}$ unit deduction		1
(b) $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ (2) $\frac{OR}{I}$ $V = IR$ (3) $1 \cdot 2 = I \times 2000$ $1 \cdot 2 = I \times 2000$ $I = 0.0006 A$ (2) $I = 0.0006 A$ (3) $I = 0.0006 A$ (4) $I = IR$ $I \cdot 8 = 0.0006 \times R$	$\frac{\mathbf{OR}}{V_1} = \frac{R_1}{R_2} \times V_s$ $1.8 = \left(\frac{R_1}{R + 2000}\right) \times 3$ $R_1 = 3000 \Omega$	
$R = 3000 \Omega (3)$	OR 1·2:2000 1·8:3000	2
(c) light intensity is decreasing (1)		
$\underline{\mathbf{V}}_{1}$ is increasing (1)		
resistance (of LDR) is increasing (1)	1	3
		2
NOTES:		*******
(c) Statement of intensity decreasing alone gets zero marks.		
(c) Statement of intensity decreasing followed by wrong explanation gets 1 mark.		
(c) V ₁ increases (anywhere in answer) (1)		
$\begin{array}{c} V_1 \uparrow \Rightarrow R \uparrow \\ \mathbf{OR} \ V_1 \downarrow \Rightarrow R \downarrow \end{array} \tag{1}$		
$R \uparrow \Rightarrow I \downarrow$ $\mathbf{OR} \ R \downarrow \Rightarrow I \uparrow $ (1)		

Sample Answe	er and Mark Allocation	Notes	Marks
	elow $0.7 \mathrm{V}$ between $20 \mathrm{s}$ and $50 \mathrm{s}$ (1)		2
ti aiisis	tor is switched on (1)	Independent marks	2
			Total 9

And the second s		
Sample Answer and Mark Allocation	Notes	Marks
26. (a) P = IV (2)		
$40 = I \times 230 \qquad \textbf{(3)}$		
$I = 0.174 A$ (2) (3) $0.2 \rightarrow 0.1739 A$		2
(b) V = IR (1) OR P = $\frac{V^2}{R}$ (1)	OR	
$230 = 0.174 \times R $ (2)	$P = I^2 R \qquad (\frac{1}{2})$	
$R = 1322.5 \Omega \text{ (2)} \text{ (2)} \qquad 40 = \frac{230^2}{R} \qquad (2)$	$40 = (0.174)^2 R$ (3) $R = 1322.5 \Omega$ (3)(3)	
$R = 1322 \cdot 5 \Omega \ (3) \ (3)$	K = 1322.3 52 (2)(2)	2
(c) Position 1 (1)		
Maximum voltage (across motor) (1) OR maximum current (in motor)		
OR 230 V across motor OR no extra resistance to decrease current		2
(d) Voltage across $R_x = 230 - 180 = 50 \text{ V}$ (1)		
$V = IR \qquad (3)$	7.7	
$50 = 0.25 \times \mathbf{R} \textbf{(3)}$	1	
$\mathbf{R} = 200\mathbf{\Omega} \qquad \textbf{(3)} \textbf{(3)}$		3
NOTES:		Total 9
(c) Position 1 (only) = zero marks Position 1 followed by wrong explanation = 1 mark Voltage through motor = zero marks		
(d) Any other voltage than 50 V is wrong physics and gets ½ formula mark only.		
	9	

2002 1 1	lysics intermediate 2		
Sample	e Answer and Mark Allocation	Notes	Marks
27. (a)	movement of coil in magnetic field (1) OR movement of coil near magnet		
	change in direction of coil \Rightarrow a.c. (1)		2
(b)	greater number of turns in the coil (1)		
	stronger magnetic field (1)		
	OR stronger magnet OR more powerful magnet		****
·	Do not accept bigger magnet louder sound bigger diaphragm		C.
	Accept coils for turns		2
(c)	voltage gain = $\frac{\text{output(voltage)}}{\text{input (voltage)}}$ (1)		
	$gain = \frac{0.5}{0.002} \qquad \textbf{(3)}$	deduct ½ mark if	
	gain = 250 (1)	unit given	2
			Total 6
			ļ
		j	
		ļ	3

2002 P	nysics intermed	iate Z			
Sample Answer and Mark Allocation			Notes	Marks	
28. (a)	energy lost (on r	eflection) (1)			
	OR sound absor	bed by air/tube/en	d		1
(b)	6 ms OR 0·006 s	(½) (½)			1
(c)	d = vt	(2)			
	$d = 340 \times 0.006$	(1)			
	$d = 2.04 \mathrm{m}$	(1)			
	length of the tub	$e = \frac{d}{2} = 1.02 \mathrm{m}$	(1) (1)	1 1	3
(d)	$v = f\lambda$	(1)			
	$340 = 1250 \times \lambda$	(1)			
	$\lambda = 0.272 \text{m}$	(½) (½)	# P		2
					TD-4-17
					Total 7
			7700		1
			, , , , , , , , , , , , , , , , , , ,		
•					

			77.7.		
			****		***************************************

				•	
			- Annual Control of the Control of t		
			-		

×

2002 Physics Intermediate 2	*	
Sample Answer and Mark Allocation	Notes	Marks
29. (a) does not emerge (1) P law of reflection (1)	Ray <u>must</u> cross normal.	2
(b)		
emerges (1) away from normal (1)	Ray <u>must</u> cross	
NOTE:	normal.	2
(b) Accept partial internal reflection if refraction also shown.		Total 4

200213		rate 2		
Sample Answer and Mark Allocation			Notes	Marks
30. (a)	No. of decays $= a$	activity×time (1)		
	$N = 1600 \times 10^6 \times$	30 (1)		
	$N = 4.8 \times 10^{10}$	(1) $\frac{1}{2}$ unit deduction		2
(b)	R 1600 800 400 200 100 50 25 S 80 40	6 half lives 48 days (1) 1 half life 74 days (1) first (1)	Both R and S working must be shown. Idea of halfing gets ½ mark if working incomplete. Graphs acceptable	3
(c)	gloves tongs film badge shortest time of e	any two (1) (1) xposure		2
NOTES:				Total 7
50 M (c) Accept Avoid Point Don't Lead	$_{ m Bq}$	86		

Sample Answer and Mark Allocation Notes Marks 31. (a) (i) fission (ii) slow neutrons down (iii) lower control rods OR more control rods OR drop control rods in (b) advantage no greenhouse gases conserves fossil fuels a lot of energy from a little fuel, etc any one (1) disdvantage radioactive waste decomissioning stations etc any one (1) NOTES: (b) ADVANTAGE Accept No smoke Cleaner No polluting gases No SO ₂ More efficient Will last longer Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed to radiation	2002 Physics Interme	ediate 2		
(ii) slow neutrons down (1) (iii) lower control rods (1) OR more control rods OR drop control rods in (b) advantage no greenhouse gases conserves fossil fuels a lot of energy from a little fuel, etc any one (1) disdvantage radioactive waste decomissioning stations etc any one (1) NOTES: (b) ADVANTAGE Accept Do Not Accept No smoke Cleaner No polluting gases Cheaper No SO₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	Sample Answer and	Notes	Marks	
(iii) lower control rods OR more control rods OR drop control rods in (b) advantage no greenhouse gases conserves fossil fuels a lot of energy from a little fuel, etc any one (1) disdvantage radioactive waste decomissioning stations etc any one (1) 2 NOTES: (b) ADVANTAGE Accept No smoke Cleaner No polluting gases No SO ₂ More efficient Will last longer Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Pollution answers must be specific Pollution answers must be specific Total 5	31. (a) (i) fission	(1)	i i	1
OR more control rods OR drop control rods in (b) advantage no greenhouse gases conserves fossil fuels a lot of energy from a little fuel, etc any one (1) disdvantage radioactive waste decomissioning stations etc any one (1) NOTES: (b) ADVANTAGE Accept No smoke Cleaner No polluting gases No SO ₂ More efficient Will last longer Do Not Accept Won't run out DISADVANTAGE Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	(ii) slow neutr	rons down (1)		1
conserves fossil fuels a lot of energy from a little fuel, etc any one (1) disdvantage radioactive waste decomissioning stations etc any one (1) NOTES: (b) ADVANTAGE Accept Do Not Accept No smoke Cleaner No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	OR more	control rods		1
disdvantage radioactive waste decomissioning stations etc any one (1) 2 NOTES: (b) ADVANTAGE Accept Do Not Accept No smoke Cleaner No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	(b) advantage	conserves fossil fuels a lot of energy from a little fuel, etc		
NOTES: (b) ADVANTAGE Accept	disdvantage	radioactive waste decomissioning stations		
Accept Do Not Accept No smoke Cleaner No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources		any one (1)		2
(b) ADVANTAGE Accept Do Not Accept No smoke Cleaner No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	NOTES:			Total 5
No smoke Cleaner No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	(b) ADVANTAGE			10tal 5
No polluting gases Cheaper No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	Accept	Do Not Accept		
No SO ₂ More efficient Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources		Cleaner		
Will last longer Won't run out DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources				
DISADVANTAGE Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources				
Accept Do Not Accept Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	will last longer	won t run out		<u> </u>
Reactor accidents Nuclear weapons Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	DISADVANTAGE			744
Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	<u>Accept</u>	Do Not Accept		
Toxic waste Dangerous if a leak Workers exposed Produces radioactive sources	Reactor accidents	Nuclear weapons		
		Dangerous if a leak		
	_	Produces radioactive source	\$	
			,	