2004 Physics

Intermediate 2

Finalised Marking Instructions

2004 Physics Intermediate 2

Marking scheme

Section A

1.	A	11.	D
2.	C	12.	E
3.	B	13.	B
4.	E	14.	E
5.	C	15.	A
6.	D	16.	D
7.	E	17.	C
8.	C	18.	A
9.	D	19.	B
10.	C	20.	D

2004 Physics Intermediate 2				
Sample Answer and Mark Allocation			Notes	Marks
21. (a)	$\begin{aligned} & \mathrm{E}_{\mathrm{P}}=\mathrm{mgh} \\ & \mathrm{E}_{\mathrm{P}}=1 \cdot 2 \times 10 \times 0 \cdot 2 \\ & \mathrm{E}_{\mathrm{P}}=2 \cdot 4 \mathrm{~J} \end{aligned}$	$\begin{array}{r} (1 / 2) \\ (1 / 2) \\ (1 / 2)(1 / 2) \end{array}$		2
(b)	$\begin{aligned} \mathrm{E}_{\mathrm{K}} & =\mathrm{E}_{\mathrm{P}} \\ 1 / 2 \mathrm{~m} \mathrm{v}^{2} & =2 \cdot 4 \\ 0.5 \times 1 \cdot 2 \times \mathrm{v}^{2} & =2 \cdot 4 \\ \mathrm{v} & =2 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$		2
(c)	$\begin{aligned} (1.2+2 \cdot 8) \mathrm{v} & =1.2 \times 2 \\ \mathrm{v} & =0.6 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & (1 / 2)(1 / 2) \\ & (1 / 2)(1 / 2) \end{aligned}$		2
	one light gate just after collision point measure length of cart A or card on cart A clock or computer measure time for card to pass through light gate calculate speed using $\frac{\text { length of card }}{\text { time on clock }}$	(1/2) (1/2) (1/2) (1/2) (1)		3
				Total 9

Sample Answer and Mark Allocation	Notes	Marks
22. (a) (i) 2 s (ii) The train starts to decelerate (after 2s) OR reaction time of driver	$1 / 2$ unit deduction	1 1
$\text { (b) } \quad \begin{align*} \mathrm{a} & =\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \tag{1/22}\\ & =\frac{10-45}{14} \tag{1/2}\\ & =-2.5 \mathrm{~m} / \mathrm{s}^{2} \end{align*}$ $(1 / 2)(1 / 2)$		2
(c) distance gone $=$ area under graph $\begin{equation*} =(2 \times 45)+(14 \times 10)+\left(\frac{1}{2} \times 14 \times 35\right) \tag{1/2} \end{equation*}$ $\begin{equation*} =475 \mathrm{~m} \tag{1/2} \end{equation*}$ Yes - train is travelling at right speed		3
		Total 7

Sample Answer and Mark Allocation			Notes	Marks
23. (a)	$\begin{aligned} & \mathrm{E}_{\mathrm{W}}=\mathrm{Fd} \\ &=84000 \times 12 \\ &=1008000(\mathrm{~J}) \\ & \\ & \mathrm{E}_{\mathrm{W}}=\mathrm{Pt} \\ & 1008000=\mathrm{P} \times 240 \\ & \mathrm{P}=4200 \mathrm{~W} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & \left(\begin{array}{l} 1 \end{array}\right) \end{aligned}$		3
	$\begin{aligned} \mathrm{P} & =\mathrm{I} \mathrm{~V} \\ & =16 \times 400 \\ & =6400 \mathrm{~W} \end{aligned}$	$\begin{array}{r} (1 / 2) \\ (1 / 2) \\ (1 / 2)(1 / 2) \end{array}$		2
(c)	$\begin{aligned} \% \text { efficiency } & =\frac{\text { Power out }}{\text { Power in }} \times 100 \\ & =\frac{4200}{6400} \times 100 \\ & =65 \cdot 6 \% \end{aligned}$	(1/2) (1/2) $(1 / 2)(1 / 2)$		2
	power supplied will have to be greater to give kinetic energy to wheel OR to overcome maximum friction force at start OR to provide unbalanced force at start	(1) (1)		2
				Total 9

Sample Answer and Mark Allocation	Notes	Marks
24. (a) electrical (energy) \rightarrow heat (energy) (1)		1
(b) resistance wire OR element OR coil (of wire) OR resistor		1
(c) $\begin{align*} \mathrm{E}_{\mathrm{H}} & =\mathrm{cm} \Delta \mathrm{~T} \tag{1/2}\\ & =2400 \times 0.4 \times 5 \tag{1/22}\\ & =4800 \mathrm{~J} \end{align*}$ $(1 / 2)(1 / 2)$		2
(d) $\begin{align*} & \mathrm{E}_{\mathrm{H}}=\mathrm{Pt} \tag{1/2}\\ & 4800=\mathrm{P} \times 240 \tag{1/2}\\ & \mathrm{P}=20 \mathrm{~W} \tag{1/2} \end{align*}$ Assume that no heat (or energy) lost to surroundings/air/beaker OR All heat (or energy) retained by liquid		3
		Total 7

Sample Answer and Mark Allocation			Notes	Marks
25. (a)	steps down the voltage OR lowers/reduces the voltage	(1)		1
(b)	$\begin{aligned} & \frac{\mathrm{Vs}}{\mathrm{Vp}}=\frac{\mathrm{Ns}}{\mathrm{~Np}} \\ & \frac{\mathrm{Vs}}{230}=\frac{50}{2000} \\ & \mathrm{Vs}=5.75 \mathrm{~V} \end{aligned}$	(1/2) (1/2) $(1 / 2)(1 / 2)$		2
	$\begin{aligned} \text { Is Vs } & =\mathrm{Ip} \mathrm{Vp} \\ \mathrm{Is} \times 5.75 & =0.024 \times 230 \\ \text { Is } & =0.96 \mathrm{~A} \end{aligned}$	$\begin{array}{r} (1 / 2) \\ (1 / 2) \\ (1 / 2)(1 / 2) \end{array}$		2
	$\begin{aligned} v & =f \lambda \\ 3 \times 10^{8} & =1800 \times 10^{6} \times \lambda \\ \lambda & =0.167 \mathrm{~m} \end{aligned}$	($1 / 2$) (1 for speed) $(1 / 2)(1 / 2)$		3
				Total 8

Sample Answer and Mark Allocation			Notes	Marks
26. (a) (i) (ii) (iii)	(total internal) reflection $\begin{aligned} \mathrm{V}_{\mathrm{R}} & =12 \cdot 1 \cdot 8 \\ & =10 \cdot 2 \mathrm{~V} \\ \mathrm{~V} & =\mathrm{IR} \\ 10 \cdot 2 & =0 \cdot 1 \times \mathrm{R} \\ \mathrm{R} & =102 \Omega \end{aligned}$	(1) (1) (1) (1/2) (1/2) $(1 / 2)(1 / 2)$		1 3
(b) (i) (ii)	(n-channel enhancement) MOSFET less light, resistance of LDR increases voltage across LDR increases OR gate voltage increases MOSFET switched on OR MOSFET conducts	(1) (1) (1) (1)		1 3
				Total 9

Sample Answer and Mark Allocation	Notes	Marks
27. (a) $\begin{align*} \mathrm{P} & =\frac{\mathrm{V}^{2}}{\mathrm{R}} \tag{1/2}\\ 575 & =\frac{230^{2}}{\mathrm{R}} \tag{1/2}\\ \mathrm{R} & =92 \Omega \tag{1/2} \end{align*}$ OR $\begin{align*} & \mathrm{P}=\mathrm{IV} \\ & 575=\mathrm{I} \times 230 \\ & \mathrm{I}=2.5(\mathrm{~A}) \tag{1/2}\\ & \mathrm{V}=\mathrm{IR} \\ & 230=2.5 \times \mathrm{R} \tag{1/2}\\ & \mathrm{R}=92 \Omega \tag{1/2} \end{align*}$		2
(b)		2
(c) no effect on the speed (in parallel circuit) motor still has 230 V across it		2
		Total 6

Sample Answer and Mark Allocation			Notes	Marks
28. (a)	energy	(1)		1
	300 MHz others are reflected by io OR it is only one to pass	(1) (1)		2
	total distance $=2 \times 360$ $\begin{aligned} d & =v t \\ 7.2 \times 10^{7} & =3 \times 10^{8} \times t \\ t & =0.24 \mathrm{~s} \end{aligned}$	$\begin{array}{r} (1) \\ \\ (1 / 2) \\ (1 / 2) \\ (1 / 2)(1 / 2) \end{array}$		3
				Total 6

Sample Answer and Mark Allocation	Notes	Marks
29. (a) (i) coverging OR convex (ii) $\begin{align*} P & =\frac{1}{f} \tag{1/2}\\ & =\frac{1}{0 \cdot 5} \tag{1/2}\\ & =2 \mathrm{D} \end{align*}$ choose the $+2 \cdot 0 \mathrm{D}$ label		$\begin{equation*} 3 \tag{1} \end{equation*}$
(b)		2
		Total 6

Sample Answer and Mark Allocation		Notes	Marks
30. (a)	fission (1)		1
	neutrons go on to cause further fissions OR neutrons cause chain reaction OR neutrons go on to split other nuclei		1
(c)	boron rods absorb neutrons (1)		1
	$\begin{align*} \mathrm{H} & =\mathrm{DQ} \tag{1/2}\\ & =\left(2 \times 10^{-3} \times 3\right)+\left(5 \times 10^{-6} \times 10\right) \tag{1/2}\\ & =0.00605 \mathrm{~Sv} \tag{1/2} \end{align*}$ (Note: the first and second $1 / 2$ marks for the substitution are for correct data)		3
	(i) no release of gases OR more energy from less fuel than fossil fuels OR conserves fossil fuels (ii) radioactive waste OR decommissioning power stations OR possibility of specified types of accident		2
			Total 8

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Sample Answer and Mark Allocation} \& Notes \& Marks \\
\hline 31. (a) \& (count rate) decreases (1) \& \& 1 \\
\hline \& alpha would not penetrate the aluminium foil OR alpha would be stopped by the aluminium foil \& \& 1 \\
\hline \& \begin{tabular}{l}
(i) electrons removed from atoms OR electrons added to atoms \\
(ii) distance \\
specified clothing \\
shielding \\
time \\
direction \\
monitoring \\
regulations \\
(1) (1) any two
\end{tabular} \& \& 1

2

\hline \& \& \& Total 5

\hline
\end{tabular}

