

2004 Physics

Intermediate 2

Finalised Marking Instructions

2004 Physics Intermediate 2

Marking scheme

Section A

1.	А	11.	D
2.	С	12.	Е
3.	В	13.	В
4.	Е	14.	Е
5.	С	15.	А
6.	D	16.	D
7.	E	17.	С
8.	С	18.	А
9.	D	19.	В
10.	С	20.	D

2004	Phys	ics Intermediate 2			
Samp	ple Aı	nswer and Mark Allocation		Notes	Marks
21.	(a)	$\begin{split} E_{P} &= m g h \\ E_{P} &= 1 \cdot 2 \times 10 \times 0 \cdot 2 \\ E_{P} &= 2 \cdot 4 J \end{split}$	$(1/2) \\ (1/2$		2
	(b)	$\begin{array}{rcl} E_{K} &= E_{P} \\ \frac{1}{2} \ m \ v^{2} &= 2 \cdot 4 \\ 0 \cdot 5 \times 1 \cdot 2 \times v^{2} &= 2 \cdot 4 \\ v &= 2 \ m/s \end{array}$	$\binom{1/2}{1/2}$ $\binom{1/2}{1/2}$ $\binom{1/2}{1/2}$		2
	(c)	$(1.2 + 2.8) v = 1.2 \times 2$ v = 0.6 m/s	$\binom{1/2}{1/2}$ $\binom{1/2}{1/2}$ $\binom{1/2}{1/2}$		2
	(d)	one light gate just after collision point measure <u>length</u> of cart A or card on cart A clock or computer measure time for card to pass through light gate calculate speed using $\frac{\text{length of card}}{\text{time on clock}}$	(1/2) (1/2		3
					Total 9

Sample Answer and Mark Allocation				Marks
(a)	(i) 2s	(1)	¹ / ₂ unit deduction	1
	(ii) The train starts to decelerate (after OR reaction time of driver	2s) (1)		1
(b)	$a = \frac{v - u}{t}$	(1/2)		
	$= \frac{10 - 45}{14}$ = -2.5 m/s ²	$\binom{1}{2}$ $\binom{1}{2}\binom{1}{2}\binom{1}{2}$		2
(c)	= 475 m	$\binom{1}{2}\binom{1}{2}$		
		(1)		3 Total 7
	(a) (b)	(a) (i) 2s (ii) The train starts to decelerate (after 2) OR reaction time of driver (b) $a = \frac{v - u}{t}$ $= \frac{10 - 45}{14}$ $= -2.5 \text{ m/s}^2$ (c) distance gone = area under graph $= (2 \times 45) + (14 \times 10) + (\frac{1}{2} \times 10)$	(a) (i) 2s (1) (ii) The train starts to decelerate (after 2s) OR reaction time of driver (1) (b) $a = \frac{V - u}{t}$ (¹ / ₂) $= \frac{10 - 45}{14}$ (¹ / ₂) $= -2.5 \text{ m/s}^2$ (¹ / ₂)(¹ / ₂) (c) distance gone = area under graph (¹ / ₂) $= (2 \times 45) + (14 \times 10) + (\frac{1}{2} \times 14 \times 35)$ (¹ / ₂) = 475 m (¹ / ₂)(¹ / ₂)	(a) (i) 2s (1) $\frac{1}{2}$ unit deduction (ii) The train starts to decelerate (after 2s) (1) $\frac{1}{2}$ unit deduction (b) $a = \frac{v - u}{t}$ ($\frac{1}{2}$) $= \frac{10 - 45}{14}$ ($\frac{1}{2}$) $= -2.5 \text{ m/s}^2$ ($\frac{1}{2}$)($\frac{1}{2}$) (c) distance gone = area under graph ($\frac{1}{2} \times 14 \times 35$) ($\frac{1}{2}$) $= 475 \text{ m}$ ($\frac{1}{2}$)($\frac{1}{2}$) ($\frac{1}{2}$)($\frac{1}{2}$)

Samj	ple Ar	nswer and Mark Allocation	Notes	Marks	
23.	(a)	$E_W = Fd$	(1/2)		
		$= 84\ 000 \times 12$	(1/2)		
		$= 1\ 008\ 000\ (J)$	(1/2)		
		$E_W = P t$	$(\frac{1}{2})$		
		$1\ 008\ 000\ = P \times 240$	(1/2)		
		P = 4 200 W	(1/2)		3
	(b)	P = I V	(1/2)		
	(0)	$= 16 \times 400$	(1/2)		
		= 6400 W	$\binom{1}{2}\binom{1}{2}$		2
	(c)	% efficiency = $\frac{\text{Power out}}{\text{Power in}} \times 100$	(1/2)		
		$=\frac{4200}{6400}\times100$	(1/2)		
		= 65.6%	$\binom{1}{2}\binom{1}{2}$		2
	(d)	power supplied will have to be greater to give kinetic energy to wheel	(1)		
		OR to overcome maximum friction force at start OR to provide unbalanced force at start	t (1)		2
					Total 9

Sam	iple Ai	nswer and Mark Allocation	Notes	Marks	
24.	(a)	electrical (energy) \rightarrow heat (energy)	(1)		1
	(b)	resistance wire OR element OR coil (of wire) OR resistor	(1)		1
	(c)	$\begin{split} E_{\rm H} &= cm \ \Delta T \\ &= 2 \ 400 \times 0.4 \times 5 \\ &= 4 \ 800 \ J \end{split}$	$\begin{pmatrix} 1/2 \\ (1/2) \\ (1/2) \\ (1/2) \\ (1/2) \end{pmatrix}$		2
	(d)	$E_{H} = P t 4 800 = P \times 240 P = 20 W$	(1/2) (1/2) (1/2) $(1/2)$		
OR		at no heat (or energy) lost to surroundings/air/be r energy) retained by liquid		3	
					Total 7

Sam	ple Ai	nswer and Mark Allocation	Notes	Marks	
25.	(a)	steps down the voltage OR lowers/reduces the voltage	(1)		1
	(b)	$\frac{Vs}{Vp} = \frac{Ns}{Np}$	(1/2)		
		$\frac{Vs}{230} = \frac{50}{2000}$	(1/2)		
		$V_S = 5.75V$	$\binom{1}{2}\binom{1}{2}$		2
	(c)	$Is Vs = Ip Vp$ $Is \times 5.75 = 0.024 \times 230$ $Is = 0.96 A$	(1/2) (1/2) (1/2) $(1/2)$		2
	(d)	$v = f\lambda$ $3 \times 10^8 = 1\ 800 \times 10^6 \times \lambda$ $\lambda = 0.167\ m$			3
					Total 8

Sample Answer and Mark Allocation					Notes	Marks
26.	(a)	(i)	(total internal) reflection	(1)		1
		(ii)		(1)		1
		(iii)	$V_{R} = 12 - 1.8$ = 10.2V V = I R 10.2 = 0.1 × R	(1) ($\frac{1}{2}$) ($\frac{1}{2}$)		
			$R = 102 \Omega$	$\binom{1}{2}\binom{1}{2}$		3
	(b)	(i)	(n-channel enhancement) MOSFET	(1)		1
		(ii)	less light, resistance of LDR increases	(1)		
			voltage across LDR increases OR gate voltage increases	(1)		
			MOSFET switched on OR MOSFET conducts	(1)		3
						Total 9

Sam	ple Ansv	ver and Mark Allocati	on	Notes	Marks
27.	(a)	$P = -\frac{V^2}{R}$	(1/2)		
		$575 = \frac{230^2}{R}$	(1/2)		
		$R = 92 \Omega$	$\binom{1}{2}\binom{1}{2}$		
	OR				
		P = IV $575 = I \times 230$ I = 2.5 (A)	(1/2)		
		V = IR 230 = 2.5 × R	(1/2)		
		$R = 92 \Omega$	(1/2) (1/2)		2
	(b)	M	parallel circuit (1) circuit components (1) NB mark in order		
	Ľ	•			2
		no effect on the speed (in parallel circuit) moto	(1) r still has 230 V across it (1)		2
					Total 6

Sam	ple Ai	nswer and Mark Allocation	Notes	Marks	
28.	(a)	energy	(1)		1
	(b)	300 MHz	(1)		
		others are reflected by ionosphere OR it is only one to pass through ionosphere	(1)		2
	(c)	total distance = $2 \times 36\ 000\ \text{km} = 7 \cdot 2 \times 10^7\ \text{m}$	(1)		
		$d = v t 7.2 \times 10^{7} = 3 \times 10^{8} \times t t = 0.24 s$	$(1/2) \\ (1/2$		3
					Total 6

Sam	Sample Answer and Mark Allocation				Notes	Marks
29.	(a)	(i)	coverging OR convex	(1)		1
		(ii)	$\mathbf{P} = \frac{1}{\mathbf{f}}$	(1/2)		
			$=\frac{1}{0\cdot 5}$	(1/2)		
			= 2 D	$\binom{1}{2}\binom{1}{2}$		
			choose the $+ 2.0$ D label	(1)		3
	(b)		i air glass	correct refracted ray $(\frac{1}{2})$ normal $(\frac{1}{2})$ angle i $(\frac{1}{2})$ angle r $(\frac{1}{2})$		2
						Total 6

Sam	ple Ai	nswer and Mark Allocation	Notes	Marks
30.	(a)	fission (1)		1
	(b)	neutrons go on to cause further fissions OR neutrons cause chain reaction OR neutrons go on to split other nuclei (1)		1
	(c)	boron rods absorb neutrons (1)		1
	(d)	H = DQ $(\frac{1}{2})$ = $(2 \times 10^{-3} \times 3) + (5 \times 10^{-6} \times 10)$ $(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})$ = $0 \cdot 00605$ Sv $(\frac{1}{2})(\frac{1}{2})$ (Note: the first and second $\frac{1}{2}$ marks for the substitution are for correct data)		3
	(e)	 (i) no release of gases OR more energy from less fuel than fossil fuels OR conserves fossil fuels (1) (ii) <u>radioactive</u> waste OR decommissioning power stations OR possibility of specified types of accident (1) 		2
				Total 8

Sam	ple Ar	nswer and Mark Allocation	Notes	Marks
31.	(a)	(count rate) decreases (1)		1
	(b)	alpha would not penetrate the <u>aluminium</u> foil OR alpha would be stopped by the <u>aluminium</u> foil (1)		1
	(c)	(i) electrons removed from atoms OR electrons added to atoms		1
		 (ii) distance specified clothing shielding time direction monitoring regulations (1) (1) any two 		2
				Total 5

[END OF MARKING INSTRUCTIONS]