

2008 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2008

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V = IR $7 \cdot 5 = 1 \cdot 5R$ $R = 5 \cdot 0 \Omega$	Mark + Comment $\binom{1}{2}$ $\binom{1}{2}$ (1)	Issue Ideal answer
2.	5·0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2 (a)
4.	4·0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$\mathbf{R} = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0 \Omega$	$(1\frac{1}{2})$ Arithmetic error	GMI 7
7.	$\mathbf{R} = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$\mathbf{R} = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$\mathbf{R} = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$\mathbf{R} = \frac{V}{I} = \frac{1.5}{7.5} = 5.0\Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \ \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(½) Formula only	GMI 20

2008 Physics Intermediate 2

Marking scheme

Section A

1.	Е	11.	D
2.	С	12.	Е
3.	С	13.	С
4.	В	14.	В
5.	D	15.	С
6.	В	16.	А
	B A	16. 17.	
			В
7.	А	17.	B A

2008 1	Physics	Intermediate 2			
Samp	le Answ	ver and Mark Allocation	Notes	Marks	
21.	(a)	$a = \frac{v - u}{t}$	(1/2)		
		$a = \frac{9}{2}$	(1/2)		
		$a = 4.5 m/s^2$	(1)		2
	(b)	$F = m \times a$ $F = 15 \times 4.5$ F = 67.5 N	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$		2
	(c)	d = area under graph d = $(0.5 \times 9 \times 2) + (10 \times 9) + (0.5 \times 9 \times 1)$ d = $9 + 90 + 4.5$ d = 103.5 m	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)		2
	(d)	$\mathbf{P} = \frac{1}{\mathbf{f}}$	(1/2)		
		$P = \frac{1}{0 \cdot 2}$ $P = 5 D$	(½) (1)		2
					Total 8

Samp	ole Ansv	ver and Mark Allocation	Notes	Marks
22.	(a)	Stated scale diagram accuracy (1131 N)	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)	
		OR		
		$d = \sqrt{800^2 + 800^2}$	(1)	
		= 1131 N	(1)	2
	(b)	(i) $W = mg$ = 180 × 10 = 1800 N	(1/2) (1/2) (1)	2
		(ii) resultant = 2700 - 1800 = 900 N $a = \frac{F}{-}$	(1) (½)	
		$=\frac{\frac{m}{900}}{180}$	(1/2)	
		$= 5 \text{ m/s}^2$	(1)	3
				Total 7

Samp	ple Ansv	Sample Answer and Mark Allocation			Marks
23.	(a)	(i)	$\begin{split} E_{w} &= F \times d \\ E_{w} &= 300 \times 1.5 \\ E_{w} &= 450 \text{ J} \end{split}$	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)	2
		(ii)	$E = 450 \times 500 = 225000 J$ $P = \frac{E}{t}$ 225000	(1) (½)	
			$P = \frac{225000}{5 \times 60}$ P = 750 W	(½) (1)	3
	(b)	(i)	$E = c m \Delta T$ $450 \times 500 = 902 \times 12 \times \Delta T$ $\Delta T = 20.787$ $= 21^{\circ}C$	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)	2
		(ii)	energy is lost to the surrounding air	(1)	1
					Total 8

Samp	ple Ansv	wer and	Notes	Marks		
24.	(a)	$E_p = 1$ $E_p = 2$ $E_p = 2$	mgh 750 × 10 × 7∙2 54000 J		2	
	(b)	(i)	54000 J	(1)		1
		(ii)	$E_{K} = \frac{1}{2} mv^{2}$ $54000 = 0.5 \times 750 \times v^{2}$ v = 12 m/s	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$		2
						Total 5

Samp	ole Ansv	wer and]	Notes	Marks		
25.	(a)	$P = I^2$ $2 = I^2$ $I^2 = 0$	× 50	$\binom{1}{2}{1}{2}{1}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}$		
		I = 0.2		(1)		2
	(b)	(i)	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2}$	(1/2)		
			$\frac{1}{R_t} = \frac{1}{60} + \frac{1}{30}$	(1/2)		
			$R_t = 20 \Omega$	(1)		2
		(ii)	$P = \frac{V^2}{R}$	(1/2)	¹ / ₂ for equation <u>once</u> only.	
			$P = \frac{9^2}{60}$ $= 1.35 \text{ W}$	(½) (1)	¹ / ₂ for both substitutions.	
			$P = \frac{V^2}{R}$ $P = \frac{9^2}{30}$	(1/2)		
			$P = \frac{9^2}{30}$	(1/2)		
			$= 2.7 \mathrm{W}$	(1)		3
		(iii)	30 ohm resistor will overheat	(1)		1
	(c)	none		(1)		1
						Total 9

Samp	Sample Answer and Mark Allocation					Marks
26.	(a)	Soun	d energy to Electrical energy	(1)		1
	(b)	(i)	None	(1)		1
		(ii)	Greater	(1)		1
	(c)	v = f 340 = $\lambda = 0$	$= 850 imes \lambda$	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$		2
	(d)	(i)	If light inside the prism strikes the surface at an angle greater than the critical angle it will be totally internally reflected.	, (1)		1
		(ii)	internal reflection right angle – conditional on internal reflection	(1) (1)		2
						Total 8

Samp	ole Answ	ver and]	Mark Allocation		Notes	Marks
27.	(a)	(i)	The resistance of LDR drops (with light level rise)	(1)		
			V across R rises	(1)		
			until <u>MOSFET</u> switches <u>on</u> <u>the motor</u>	(1)		3
		(ii)	to set the light level at which the blind closes.	(1)		1
	(b)	(i)	3000 ohms	(1)		1
		(ii)	$\mathbf{V}_1 = \left(\frac{\mathbf{R}_1}{\mathbf{R}_1 + \mathbf{R}_2}\right) \mathbf{V}_{\mathbf{S}}$	(½)		
			$\mathbf{V} = \left(\frac{600}{600 + 3000}\right) \times 12$	(1/2)		
			V = 2 V	(1)		2
		(iii)	Since V< 2.4 V transistor will not switch on so blinds do not shut.	(1) (1)		2
						Total 9

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks
28.	(a)	(i) to limit current in/voltage across the LED	(1)	1
		(ii) $Vr = 12 - 2 = 10 V$ $R = \frac{V}{I}$	(1) (½)	
		$R = \frac{10}{0 \cdot 02}$ $R = 500 \ \Omega$	(½) (1)	3
		(iii) $I = 10 \times 20$ = 200 mA = 0.2 A	(1) (1)	2
	(b)	$\frac{n_s}{n_p} = \frac{V_s}{V_p}$	(1/2)	
		$\frac{n_s}{200} = \frac{84}{12}$	(1/2)	
		$n_{s} = 1400 (turns)$	(1)	2
				Total 8

Samp	Sample Answer and Mark Allocation Notes					
29.	(a)	Converging/convex	(1)		1	
	(b)	ray parallel to axis and through 'f' ray through centre of lens projections to a point image position 5-7 cm	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$		2	
	(c)	Make thinner/or less curved	(1)		1	
	(d)	Long sight	(1)		1	
					Total 5	

Samp	ple Ansv	ver and Mark Allocation	Notes	Marks	
30.	(a)	Count rate increases Air is more easily penetrated/less metal to be penetrated	(1) (1)		2
	(b)	Gamma penetrates best/other two would not penetrate steel	(1) (1)		2
	(c)	x-rays longer/gamma shorter	(1)		1
					Total 5

Sample Answer and Mark Allocation			Notes	Marks
31.	(a)	time taken for half of the radioad to decay or activity to decrease b		1
	(b)	Days activity 0 64 2.7 32 table (or similar 5.4 16 8.1 8 10.8 4 13.5 2 kBq) (1) (1)	2
	(c)	Any 2 of shielding /limiting time increasing distance	e of exposure/ (1) each	2
	(d)	(i) $H = w_r D$ = 20 × 10 mGy = 200 mSv	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)	2
		(ii) Tissue type	(1)	1 Total 8

[END OF MARKING INSTRUCTIONS]