2009 Physics

Intermediate 2

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $V=I R$
$7 \cdot 5=1 \cdot 5 R$
$R=5 \cdot 0 \Omega$
2. $5 \cdot 0 \Omega$
3. $5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. Ω
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4.0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad
10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
(1) Formula + substitution
(1/2) Formula but wrong substitution
11. $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
12. $R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$
(1/2) Formula but wrong substitution
(0) Wrong formula
(11/2) Arithmetic error
(1/2) Formula only

Issue

Ideal answer

GMI 1

GMI 2 (a)

GMI 1

GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2 (a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

2009 Physics Intermediate 2

Marking scheme

Section A

1. C 11. B
2. C
3. D
4. E
5. A
6. A
7. D
8. B
9. C
10. B
11. E
12. D
13. E
14. E
15. A
16. B
17. D
18. E
19. C

Sample Answer and Mark Allocation		Notes	Marks
$\text { 22. (a) } \begin{align*} a & =\frac{(v-u)}{t} \quad \text { OR } \quad a=\frac{\Delta v}{t} \tag{-1/2}\\ a & =\frac{(3-0)}{5} \\ a & =0.6 \mathrm{~m} / \mathrm{s}^{2} \end{align*}$	(1/2) (1/2) (1)	$\left.\begin{array}{l} \mathrm{m} / \mathrm{s}^{-2} \\ \mathrm{mp} / \mathrm{s}^{2} \\ \mathrm{~m} / \mathrm{s} / \mathrm{s} \end{array}\right\}$	2
(b) $\begin{aligned} F & =m a \\ F & =40 \times 0 \cdot 6 \\ & =24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$		2
(c) There is an unbalanced force/friction, this acts against the motion. (must have some mention of opposing the motion) Ignore mention of component of weight	(1) (1)		2
			Total 6

\begin{tabular}{|c|c|c|}
\hline Sample Answer and Mark Allocation \& Notes \& Marks \\
\hline \begin{tabular}{l}
23. (a) width/length of card (d) \\
time taken for card to cut beam (t) \\
\(v=\frac{d}{t}\) \\
or \(\bar{v}=\frac{d}{t}\) \\
or with correct measurements
\[
v=\frac{\text { length of card }}{\text { time taken card to cut beam }} \text { (this equation on its own }=2 \text {) }
\]
\end{tabular} \& must define ' d ' and ' t ' to get 2nd mark \(v=\frac{d}{t} \quad\) on its own \(=0\) marks \& 2 \\
\hline (b)
\[
\text { (i) } \begin{aligned}
p \& =m v \\
\& =\left(5 \times 10^{-4}+0.3\right) \times 0.35 \\
\& =0.105 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
\[
\text { (ii) } \begin{aligned}
v \& =\frac{p}{m} \\
\& =\frac{0 \cdot 105}{5 \times 10^{-4}} \\
\& =210 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \& \begin{tabular}{l}
this line on its own \(=1\) mark must have 2nd line \\
if they use \(0 \cdot 105175\) from mom calculation they get \(210 \cdot 35=(-1 / 2)\) for sig figs
\[
210 \cdot 4=\sqrt{ }
\]
\end{tabular} \& 1

1

\hline
\end{tabular}

Sample Answer and Mark Allocation		Notes	Marks
(c) $\text { (i) } \begin{aligned} a & =\frac{(v-u)}{t} \\ 10 & =\frac{(v-0)}{0 \cdot 2} \\ v & =2 \mathrm{~m} / \mathrm{s} \end{aligned}$ $\text { (ii) } \begin{aligned} d & =\bar{v} t \\ & =1 \times 0.2 \\ & =0.2 \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)	$\begin{aligned} & \Delta v=2 \mathrm{~m} / \mathrm{s} \\ & \mathrm{v}=1.96 \text { if using } 9.8 \text { or } 1.962 \text { if using } 9.81 \end{aligned}$ if they use a graph: $\text { area under graph/or } 1 / 2 \mathrm{bh}=(1 / 2)$ $1 / 2(0 \cdot 2 \times 2)=0 \cdot 2 \mathrm{~m}$ (1/2) (1)	2
			Total 8

Sample Answer and Mark Allocation		Notes	Marks
24. (a) $\begin{aligned} E_{h} & =c m \Delta T \\ & =4180 \times 0.1 \times 15 \\ & =6270 \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	If 4180 not used then $(1 / 2)$ max for formula ignore negative energy	2
(b) $\begin{aligned} E_{h} & =m l \\ & =0.1 \times 3.34 \times 10^{5} \\ & =3.34 \times 10^{4} \mathrm{~J} \end{aligned}$	$(1 / 2)$ (1/2) (1)	If 3.34×10^{5} not used then ($1 / 2$) max for formula	2
(c) (i) $33400+6270=39670 \mathrm{~J}$	(1)	must be consistent with (a) and (b)	
$\begin{aligned} & E=P t \\ & 39670=125 \times t \\ & t \quad=\quad 317 \cdot(36) \mathrm{s} \end{aligned}$ (ii) Heat energy will be gained from surroundings/other food etc More energy must be removed	(1/2) (1/2) (1) (1) (1)	must have added (a) and (b). If not max ($1 / 2$) for formula (no secs)	3
			Total 9

Sample Answer and Mark Allocation	Notes	Marks

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Sample Answer and Mark Allocation} \& Notes \& \& Marks \\
\hline 26. (a)
\[
\begin{aligned}
\& \frac{I_{p}}{I_{s}}=\frac{V_{s}}{V_{p}} \\
\& \frac{I_{p}}{1}=\frac{5}{230} \\
\& I_{p}=0.022 \mathrm{~A} \\
\& (0.02,0.0217 \mathrm{accept})
\end{aligned}
\] \& \begin{tabular}{l}
(1/2) \\
(1/2) \\
(1)
\end{tabular} \& \& \& 2 \\
\hline \begin{tabular}{l}
(b)
\[
\text { (i) } \begin{aligned}
P \& =\frac{V^{2}}{R} \\
10 \& =\frac{9^{2}}{R} \\
R \& =8 \cdot 1 \Omega
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
V_{g} \& =\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}} \\
\& =\frac{9}{1 \cdot 5} \\
\& =6
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
(1/2) \\
(1/2) \\
(1) \\
(1/2) \\
(1/2) \\
(1)
\end{tabular} \& \begin{tabular}{l}
9 not squared \(=(1 / 2)\) max formula
\[
\begin{array}{ll}
\mathrm{P}=\mathrm{VI} \& \mathrm{~V}=\mathrm{IR} \\
10=9 \times \mathrm{I} \& 9=1 \cdot 11 \times \mathrm{R} \\
\mathrm{I}=1 \cdot 11 \mathrm{~A} \& \mathrm{R}=8.1 \Omega
\end{array}
\] \\
NB no unit!
\end{tabular} \& \begin{tabular}{l}
both (1/2) \\
sub (1/2) \\
(1)
\end{tabular} \& 2

2

\hline
\end{tabular}

Sample Answer and Mark Allocation		Notes	Marks
	(1/2) (1/2) (1) (1/2) (1/2) (1)	if energy equation for efficiency used $=0$	2
			Total 8

Sample Answer and Mark Allocation	Notes	Marks
27. (a) (i) short sight $=$ the image is in focus before the retina or cannot see distant objects clearly (1) (ii) concave or diverging (iii) $P=\frac{1}{f}$ $=(-) \frac{1}{0 \cdot 18}$ $=(-) 5 \cdot 6 \mathrm{D}$ ($6,5 \cdot 56,5 \cdot 556,5 \cdot 5556$ acceptable)	no conversion to 'm' = (-1/2)	
(b) (i) refraction $=$ the change in the speed or wavelength of light as it passes between two media (of different densities) (or similar) or (change in direction) because of change in speed between two media (ii) $v=f \lambda$ $\begin{align*} & 3 \times 10^{8}=f \times 7 \times 10^{-7} \tag{1/2}\\ & f=4.29 \times 10^{14} \mathrm{~Hz} \tag{1/2}\\ & f=4 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$ (4•3, 4-29 acceptable)	not changing direction/not bending	1 2

Sample Answer and Mark Allocation	Notes	Marks
(c) (i) Ray must obey the law of reflection (1) Appropriate number of reflections (ii) (total internal) reflection (TIR)	line not straight (-1) PJ	2 1
		Total 10

Sample Answer and Mark Allocation		Notes	Marks
28. (a) $\begin{aligned} v & =\frac{d}{t} \\ 340 & =\frac{d}{2 \times 10^{-3}} \\ d & =0.68 \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	only 340 acceptable	3
d $=0.34 \mathrm{~m}$ one way	(1)		
$\text { (b) } \begin{aligned} (f & \left.=\frac{1}{T}\right) \\ f & =\frac{1}{0 \cdot 125} \\ f & =8 \mathrm{~Hz} \end{aligned}$	(1/2) (1/2) (1)	non-standard symbols acceptable	2
$\text { (c) } \begin{aligned} \mathrm{I} & =200 \mathrm{~mA} \\ P & =I V \\ & =200 \times 10^{-3} \times 12 \\ & =2.4 \mathrm{~W} \end{aligned}$	(1) (1/2) (1/2) (1)	if use anything other than 200 then $\max (1 / 2)$ for formula if both 20 and 200 mA are used in separate calculations, the maximum power must be clearly indicated. If not - max (1/2) for formula	3
(d) (i) (the resistor) stops too large a current (flowing through the LED) or too large a voltage across the LED $\begin{aligned} (\mathrm{ii}) V & =12-3 \cdot 5=8.5(\mathrm{~V}) \\ V & =I R \\ 8 \cdot 5 & =200 \times 10^{-3} \times R \\ R & =42 \cdot 5 \Omega \end{aligned}$	(1) (1) (1/2) (1/2) (1)	no blowing of LED protects the LED - must be qualified must attempt subtraction if 12 or 3.5 used $-\max (1 / 2)$ for formula	1 3
			Total 12

[END OF MARKING INSTRUCTIONS]

