2015 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Physics Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Physics Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1. \quad| Answers | |
| :--- | :--- |
| $V=I R$ | |
| $7.5=1.5 R$ | |
| | $R=5.0 \Omega$ |
2. 5.0Ω
3. 5.0
4. 4.0Ω
5. $\quad \Omega$
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7.5}{1.5}=\longrightarrow \Omega$
10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
(1) Formula + substitution
(1⁄2) Formula but wrong substitution
11. $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
(1) Formula + subs/No final answer
12. $R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$
(1/2) Formula but wrong substitution
13. $R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$
(0) Wrong formula
(1 $1 / 2$) Arithmetic error
14. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
(1/2) Formula only

GMI 5
GMI 4 and 1

GMI 5

Issue

Ideal answer

GMI 1
GMI 2 (a)
GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 2 (a) and 7

GMI 5

GMI 7

GMI 20

2015 Physics Intermediate 2
Part Two: Marking Instructions for each Question

Section A

Question	Expected Answer(s)	Max Mark
1.	B	1
2.	B	1
3.	C	1
4.	A	1
5.	B	1
6.	D	1
7.	B	1
8.	A	1
9.	D	1
10.	C	1

Question	Expected Answer(s)	Max Mark
11.	D	1
12.	E	1
13.	A	1
14.	A	1
15.	B	1
16.	E	1
17.	E	1
18.	C	1
19.	D	1
20.	E	1

Part Two: Marking Instructions for each Question

Section B

Question			Sample Answers and Mark Allocation	Notes	Inner	Outer
21.	(a)	(i)	$\begin{align*} & a=\frac{v-u}{t} \tag{1/2}\\ & a=\frac{440-0}{40} \tag{1/2}\\ & a=11 \mathrm{~m} / \mathrm{s}^{2} \tag{1} \end{align*}$	accept $\mathrm{m} \mathrm{s}^{-2}$ but not $\mathrm{m} / \mathrm{s} / \mathrm{s}$	2	
21.	(a)	(ii)	It has both magnitude and direction.		1	
21.	(a)	(iii)	$\begin{align*} & d=\text { area under graph } \tag{1/2}\\ & d=(0.5 \times 40 \times 440)+(10 \times 440) \tag{1/2}\\ & d=8800+4400 \\ & d=13200 \mathrm{~m} \tag{1} \end{align*}$	Formula may be implied	2	
			Parachute creates friction (which acts in opposite direction to motion)	Accept air resistance or drag	1	

Question			Sample Answers and Mark Allocation		Notes		Outer
25.	(a)		correct symbol for: - battery - lamp - resistor - switch $1 / 2$ each (total 2) correct circuit (1)		battery or multiple cells (more than two but don't penalise if there aren't exactly four)	3	
	(b)		$\begin{aligned} & V=I R \\ & 2.5=0.50 \times R \\ & R=5.0 \Omega \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	Accept 5Ω	2	
	(c)		Brighter More current through lamp L (as current divides through lamp M and resistor) or greater voltage across lamp L (as smaller effective resistance for parallel circuit)		Must have brighter to access any marks, same brightness or dimmer award 0 marks. 0 marks if no attempt at a justification or justification is wrong physics. 1 mark for brighter with an attempt at justification that isn't wrong physics. 2 marks for brighter with a correct justification	2	
26.	(a)		a.c. - Current changes direction continuously d.c. - Current is in one direction		Must be reference to continuously (or similar)	2	
	(b)		$\begin{align*} & \frac{n_{s}}{n_{p}}=\frac{v_{s}}{v_{p}} \tag{1/2}\\ & \frac{250}{5000}=\frac{750}{v_{p}} \tag{1/2} \end{align*}$$V_{p}=15000 \mathrm{~V}$			2	
	(c)	(i)	$\begin{aligned} P & =I V \\ & =150 \times 700 \\ & =105000 \mathrm{~W} \end{aligned}$	(1/2) (1/2) (1)		2	
		(ii)	$\begin{gathered} \text { Efficiency }=\frac{P_{o}}{P_{i}} \times 100 \\ =\frac{84000}{105000} \times 100 \\ =80 \% \end{gathered}$	(1/2) (1/2) (1)	Must be consistent with (c) (i)	2	

Question			Sample Answers and Mark Allocation		Notes	Inner Margin	Outer Margin
27.	(a)		P			1	
	(b)		$\begin{align*} & V_{\mathrm{R}}=12-2 \cdot 4=9.6(\mathrm{~V}) \tag{1}\\ & V=I R \tag{1/2}\\ & 9 \cdot 6=I \times 400 \tag{1/2}\\ & I=0.024 \mathrm{~A} \tag{1} \end{align*}$			3	
	(c)		(Light on LDR decreases) so $R_{\text {LDR }}$ increases V across LDR increases (to a level which switches on the transistor)			2	
28.	(a)		$\begin{aligned} & d=v t \\ &=1500(1 / 2 \text { data mark }) \times 5.4 \times 10^{-5}(1 / 2) \\ &=0.081(\mathrm{~m}) \\ & \text { divide by } 2=0.0405 \mathrm{~m} \end{aligned}$		Note: the divide by 2 can be either for time or distance 0.81 m must have units if final answer Data mark awarded anywhere	3	
(b)			Longer frequency same	(1) (1)		2	
	(c)		$\begin{aligned} & V_{\text {gain }}=\frac{V_{o}}{V_{i}} \\ & 500=\frac{V_{o}}{2 \times 10^{-3}} \\ & V_{0}=1 \mathrm{~V} \end{aligned}$	(1/2) (1/2) (1)		2	

Question			Sample Answers and Mark Allocation	Notes		
29.	(a)		(1/2) each section		2	
	(b)	(i)	change in velocity/speed due to change in medium		1	
		(ii)	Q		1	
		(iii)	$\begin{align*} & P=\frac{1}{f} \tag{1/2}\\ & 1 \cdot 25=\frac{1}{f} \tag{1/2}\\ & f=0.8 \mathrm{~m} \tag{1} \end{align*}$		2	
30.	(a)		(count rate) increases		1	
	(b)	(i)	Source X: beta is required (owing to the range/some of it would be absorbed by the paper) with a long half-life	Can explain why the other sources are not suitable - eg alpha would be absorbed/not reach the detector and gamma would not be affected Could identify why beta is required for first $(1 / 2)$ and then explain that source Y's half-life is too short (to be useful) ($1 / 2$) Must have source X otherwise no marks can be awarded. Must be an attempt at an explanation that isn't wrong physics to award the first mark.	2	
		(ii)	Time for activity to decrease by half	Not - the time for the radiation/count rate to half	1	
		(iii)	(high-frequency) electromagnetic wave		1	
	(c)		using graph -2 hours	Accept 1.9-2.1 hrs	2	

[END OF MARKING INSTRUCTIONS]

