Interpreting Graphs

A few students are lacking in confidence in their ability to interpret graphs so here are a few questions from the SG Credit Papers for you to practice. You can always do the past paper questions, but here are a few questions to do. I will upload the answers as soon as I've done them! Papers found at the link here https://www.mrsphysics.co.uk/usefullinks/category/sgpp/

Paper	Year	Question	Look at the graph and answer the work below.
SG Credit	2000	Q3	- Describe, in detail what happens to the resistance of the filament lamp as the lamp is left on? - Suggest why the resistance remains constant after 0.5 s
SG Credit	2000	Q6c	- Describe, in detail what happens to the output voltage of the thermocouple as its temperature increases? - What voltage is produced by the thermocouple at $37^{\circ} \mathrm{C}$ - How could the thermocouple and this graph be used to tell if someone was ill?
SG Credit	2000	Q9c (try the whole question)	- Explain in detail the motion of both the police car and the sports car. - Calculate the acceleration of the police car when it moves off. - Determine the distance travelled by both the police car and the sports car at 50s. - Which car will be in front?
SG Credit	2000	Q12b	- Explain what happens to the gravitational field strength the higher you go from the surface of the Earth. - Over the height of 2800 km does the gravitational field strength halve? - What is the gravitational field strength on the surface of the Earth according to the graph? - The ISS orbits approximately 360 km above the surface of Earth. Determine the gravitational field strength at this height.
SG Credit	2001	Q7a	- From the graph of Resistance against temperature what can you conclude about how the resistance changes with temperature? - Determine the temperature at which the thermistor has a resistance of $2.0 \mathrm{k} \Omega$
SG Credit	2001	Q10	- Is the acceleration greater in the first 10 s or from 10-40 s? Explain how you know this - Determine the distance the aircraft move in the first 10 s? - Determine the distance travelled by the aircraft after 40 s
SG Credit	2002	Q3a	- Determine the resistance of the component under test. - State the voltage across the component when the current is 1.2 A through it.
SG Credit	2002	Q3b	\bullet Does the resistance of the component in part b remain constant? Explain how you know this. - State the voltage across the component when the current is 1.2 A through it. - State the current through the component when the voltage across it is 12 V
SG Credit	2002	Q10	- Describe the motion of the hare over the 25 s . - Describe the motion of the greyhound over the first 25 s - Calculate the acceleration of the greyhound - Calculate the distance travelled by the hare in the first 20s - Calculate the distance travelled by the greyhound in the first 20s

Paper	Year	Question	Look at the graph and answer the work below.
SG Credit	2003	Q17	- State the time when the activity of the source is 1600 MBq - Determine the time taken for the activity of the source to drop to 400 MBq - Determine the half-life of the source from the graph.
SG Credit	2003	Q10	- Describe the motion of the cyclist from the graph. - Calculate the accelerations for each part of the journey - Determine the distance travelled by the cyclist over the 20 s . - State the time(s) when the cyclist was travelling at $6 \mathrm{~ms}^{-1}$ - State the speed of the cyclist 2 s onto the journey.
SG Credit	2003	Q11	- Describe how the force of friction on the model boat changes over the 10 s. - State the force of friction acting on the boat $2 s$ after the motor was switched on. - Describe and explain the motion of the boat after 7s. - Looking just at the graph, explain how you could determine the force provided by the motor.
SG Credit	2004	Q9	- Describe the motion of the vehicle for the 150 s described in the graph. - Determine the distance travelled by the vehicle in 150 s - Calculate the acceleration of the vehicle over the 150 s - If the mass of the vehicle is 3000 kg , calculate the unbalanced force on the vehicle.
SG Credit	2004	Q11	- Explain what is shown in the graph from time 0 to 350 s - Explain what occurs between P and Q - Determine the time between P and Q - If the mass of the substance is 500 g and the heater has a power rating of 30 W , determine the specific latent heat of fusion of the substance.
SG Credit	2005	Q4	- State what happens to the current in the vacuum cleaner during the first 4.5 s after switch on. - State the current when the motor has reached full speed. - Estimate the current through the motor 1 s after switch on. - Why is this graph not suitable for full marks in an assignment (check the marking instructions)
SG Credit	2005	Q8	- State how the current changes as the voltage across the resistor changes. - State the voltage at which the transistor starts to conduct.
SG Credit	2005	Q11	- Calculate the acceleration of the train during the first 200s - Calculate the length of the journey - If possible draw out the graph for part c and answer part c of this question.
SG Credit	2006	Q3b	- Plot a graph of the results of voltage against current. - Explain which result should be retaken. - Determine the resistance from the graph.
SG Credit	2006	Q5	- Determine the half-life of the radioactive source from the graph.
SG Credit	2006	Q9a	- State the driver's reaction time. - Calculate the braking distance. - Calculate the thinking distance - Calculate the overall stopping distance.
SG Credit	2006	Q11	- The wind blows at a speed of $10 \mathrm{~ms}^{-1}$, state the charging current at this wind speed. - State the wind speed required to produce a charging current of 13 A .

Paper	Year	Question	Look at the graph and answer the work below.
SG Credit	2007	Q7aii	- Why is the received sound at a lower sound level? - Does the length of the pulse change between the transmitted and received sound? - Determine the reduction in sound level between the transmitted and received pulse? - Determine the time between the transmitted pulse being detected and the received sound being detected. - If the sound travels at $1500 \mathrm{~ms}^{-1}$ in the ear. Calculate the distance between the device and the inner ear.

