Voltage (potential difference) is the energy transferred to each coulomb of charge.

It is measured in volts $(\mathrm{V}) . \quad 1 \mathrm{~V}=1 \mathrm{~J}$ per C
Current is the charge transferred per second. It is measured in amps (A). $1 \mathrm{~A}=1 \mathrm{C}$ per s
charge $=$ current \times time

$$
Q=I t
$$

A.C. - alternating current

- changes direction and magnitude - from the mains

If the polarity of D.C. trace is reverse (the connections are swapped) the trace goes below the line by the same amount
D.C. - direct current one direction only - from a battery Same magnitude

Mains Voltage: 230V, 50 Hz
Factors that increase resistance Increase:
Temperature
Length of wire
Thickness of wire
Voltage = Current x Resistance

Ohms Law Experiment
Adjust resistance of variable resistor and take readings of V \& I

Ohms Law Graph

$$
\begin{aligned}
& \text { Gradient, } \\
& \mathrm{m}=\mathrm{V} / \mathrm{I}=\mathrm{R} \\
& m=\frac{y_{2}-y_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
\end{aligned}
$$

Connecting meters

Ammeters -> series
Voltmeters -> Parallel

Ohmmeters -> no power supply
The input voltage controls the switch.
n channel enhancement MOSFET
Input voltage must be 2 V
or above to switch on the output dev
or above to switch on the output device.
Resistance opposes the flow of current (Ω)

$1 / R_{T}=1 / R_{1}+1 / R_{2} \ldots$
Adding $R=R_{T}$
Transistors are electronic switches
npn transistor
Input voltage must be $\underline{0.7 \mathrm{~V}}$

Output Devices
All the components below change electrical energy into another form of energy

Light Emitting Diode (LED)	Electrical -> Light	N/
Solenoid	Electrical -> Kinetic	L
Motor	Electrical -> Kinetic	-M-

Buzzer	Electrical -> Sound	
Filament Lamp	Electrical -> Light	
Loudspeaker	Electrical -> Sound	
Relay	Electrical -> Kinetic	

Input devices

All the components below change another form of energy into electrical energy

Voltage (potential) dividers

These divide a supply voltage between 2 resistors

$$
\begin{gathered}
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} \\
V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{s} \\
V_{s}=V_{1}+V_{2}
\end{gathered}
$$

Power is the energy transferred per second

It is measured in
Watts (W). $1 \mathrm{~W}=$ 1 J per s

$$
\boldsymbol{E}_{\boldsymbol{w}}=\boldsymbol{Q V}
$$

Energy supplied to the charges
$=$ Charge \times voltage

A fuse melts to break the circuit if the current is too high.
Power rating less than 720W - 3A fuse
Power rating above 720W - 13A fuse

Some appliances with a power rating less that 720W require a 13A fuse as they have a high current on switch on.

Power $=\frac{\text { Energy }}{\text { Time }}$

Power = current x voltage

Power $=$ current ${ }^{2} \mathrm{x}$ resistance
Power $=$ voltage ${ }^{2} /$ resistance

$$
\begin{aligned}
& P=I V \\
& P=I^{2} R
\end{aligned}
$$

$$
P=\frac{V^{2}}{R}
$$

Greater current/voltage = greater power developed

Charges and Electric fields

- Opposites ATTRACT

- Like/Similar REPEL

A charged particle experiences a force in an electric field

Capacitors store charge on their plates. Capacitance, C, is measured in farads (F). Capacitors can be used with resistors in series as timing devices.

The bigger the value of the resistance and the bigger the value of the capacitor, the longer it takes to charge to Vs

