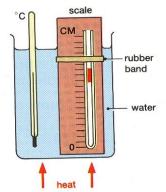
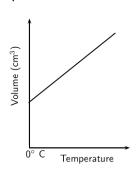
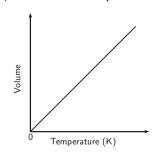
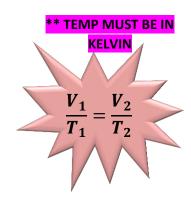
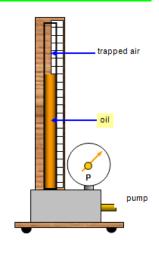

GAS LAWS SUMMARY

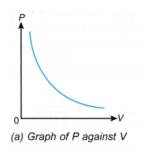

- Temp

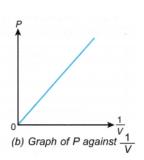

particles have greater speed, and greater Ek

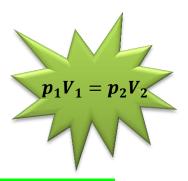

- Particles collide with container walls more often and with greater Force, - since P = F/A, Pressure ↑


2. Volume and Temperature




Kinetic theory


 Volume ↓ particles collide with container walls more often-Overall force increases, - since P = F/A, Pressure ↑


3. Pressure and Volume

(**Temperature constant, mass constant)

Kinetic theory

Volume ↓ particles collide with container walls more often
 Overall force increases - since P = F/A, Pressure ↑

Pressure is the force per unit area

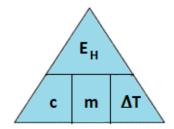
$$p = \frac{F}{A}$$

p: (Pa or Nm⁻²) F: (N) A: (m²)

Combined Gas Equation

$$\frac{pV}{T} = constant$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$


Degrees Celsius to Kelvin: + 273
Kelvin to degrees Celsius: - 273
Absolute Zero: -273 °C / 0 K
There is no negatives on the kelvin scale
Temperature is a measure of the mean kinetic
energy of particles

Specific heat capacity (c): Heat energy required to raise the temperature of 1kg of a substance by 1°C

 $E_H = c m \Delta T$

E_H: Heat energy (J) c: specific heat capacity (J kg⁻¹ °C⁻¹)

m : mass (kg) ΔT : <u>change</u> in Temperature (°C)

Specific heat capacity values are different for all materials

- values found in data sheet

E = P t can be used to find heat energy supplied by appliances

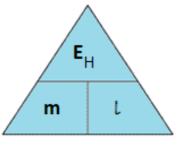
Heat energy will usually be lost to the surroundings - not all will be transferred to the substance being heated

Low specific heat capacity -

not much energy to heat (heats up quickly for constant power) but loses heat quickly

High specific heat capacity -

lots of energy to heat (heats up slowly for constant power) but loses heat slowly (retains heat better)


Specific latent heat (L): Heat energy required to change the state of 1kg of a substance at the same temperature

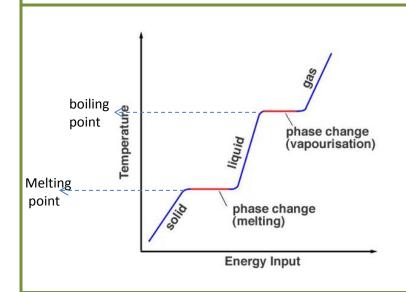
Specific latent heat values are different for all materials – values found in data sheet

 $E_H = m \ell$

E_H: heat energy (J)

m: mass (kg)

Specific Latent heat of fusion, ι_f :


Solid -> Liquid

Specific Latent heat of vaporisation ι_{\vee} :

Liquid -> Gas

l: specific latent heat of fusion / vaporisation

The same material <u>requires different quantities of heat</u> to change the state of unit mass from <u>solid to liquid (fusion)</u> and to change the state of unit mass from <u>liquid to gas</u> <u>(vaporisation).</u>

During change of state

- temperature remains constant

For change of temperature:

 $E_H = c m \Delta T$

For change of state:

 $E_H = m \ell$

"specific" = per kilogram