SCALAR and VECTOR QUANTITIES

The following are some of the **quantities** you will meet in the Intermediate 2 Physics course:

DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE.

Quantities can be divided into 2 groups:

SCALARS

VECTORS

These are specified by stating their <u>magnitude</u> (size) only, with the correct unit.

These are specified by stating their <u>magnitude</u> (size), with the correct unit, and a <u>direction</u>.

Some scalar quantities have a corresponding vector quantity.

Other scalar and vector quantities are independent. For example:

corresponding scalar quantity	corresponding vector quantity		
distance (e.g., 25 m)	displacement (e.g., 25 m North)		
speed (e.g., 10 m/s)	velocity (e.g., 10 m/s East)		
time (e.g., 12 s)	NONE		
NONE	force (e.g., 10 N to the right)		

DISTANCE and DISPLACEMENT

- <u>Distance</u> (a <u>scalar</u> quantity) is <u>the total length of path travelled</u>. [A <u>unit</u> must always be stated].
- Displacement (a vector quantity) is the length and direction of a straight line drawn from the starting point to the finishing point.

[A unit and direction must always be stated, unless the displacement is zero, in which case there is no direction].

For example:

1) Mr. Hood drives 90 km along a winding road.

- Distance travelled = 90 km
 - Displacement = 50 km bearing 77° from North
- 2) Mr. Robb jogs once around the centre circle of a football pitch.

- Distance travelled = 25 m
 - Displacement = 0 m.
 (He is back where he started, so the length of a straight line drawn from his starting point to his finishing point is 0 m).

SPEED and VELOCITY

• Speed (a scalar quantity) is the distance travelled every second.

[A **unit** must always be stated].

 <u>Velocity</u> (a <u>vector</u> quantity) is the change of displacement every second.

[A unit and direction must always be stated, unless the velocity is zero, in which case there is no direction].

Acceleration (and Deceleration)

This diagram shows a motorbike accelerating from a stationary start (rest, 0 m/s).

After each second:

- Its velocity has increased.
- It has travelled further than it travelled the second before.

This diagram shows a motorbike decelerating from a velocity of 15 m/s to rest (0 m/s).

After each second:

- Its velocity has decreased.
- It has travelled less far than it travelled the second before.

- When an object's **velocity increases** with time, the object is **a**______.
- When an object's velocity decreases with time, the object is d ______.

The acceleration (a) or deceleration of an object is its change in velocity over a given time.

Acceleration (or deceleration) is a vector quantity.

change in
acceleration velocity
(or deceleration) = time taken

$$a = \frac{v - u}{t}$$

Acceleration Calculations

Sample Calculations

Acceleration

Calculate the acceleration of a walker who speeds up from 1 m/s to 3 m/s in a time of 4 s.

$$\bullet$$
 v = 3 m/s

$$a = \frac{v - u}{t} = \frac{3 - 1}{4}$$

$$= \frac{2}{4}$$

$$= 0.5 \text{ m/s}^2$$

Deceleration

Calculate the deceleration of a cyclist who slows down from 7 m/s to 1 m/s in a time of 3 s.

$$a = \frac{v - u}{t} = \frac{1 - 7}{3}$$

$$= \frac{-6}{3}$$

$$= \underline{-2 \text{ m/s}^2}$$

The - sign indicates "deceleration"

In each case, calculate the **acceleration** of the vehicle:

(a) Farmer Jones' tractor starts from rest and speeds up to 8 m/s in 10 s.

(b) In their go-kart, Jill and her Mum ~ speed up from rest to 6 m/s in 12 s.

(c) On her motor scooter, Dominique takes 5 s to speed up from 3 m/s to 13 m/s.

(d) Mike's motorbike takes 5 s to speed up from 10 m/s to 30 m/s.

In each case: (a) Calculate the **acceleration** or **deceleration** over the stated time interval. (b) Tick the correct **acceleration** or **deceleration** box.

- initial speed (u) = 0 m/s
- final speed (v) = 6 m/s
 - time = 12 s

- acceleration \square deceleration \square
 - initial speed (u) = 1.5 m/s
 - final speed (v) = 7.5 m/s
 - time = 2 s

- acceleration \square deceleration \square
 - initial speed (u) = 12.3 m/s
 - final speed (v) = 1.5 m/s
 - time = 9 s

acceleration \square deceleration \square

- initial speed (u) = 0 m/s
- final speed (v) = 3 m/s
 - time = 2 s

- $acceleration \square deceleration \square$
 - initial speed (u) = 7.8 m/s
 - final speed (v) = 2.3 m/s
 - time = 2.5 s

- acceleration \square deceleration \square
 - initial speed (u) = 0.5 m/s
 - final speed (v) = 2.5 m/s
 - time = 20 s

acceleration \square deceleration \square

- initial speed (u) = 4.5 m/s
- final speed (v) = 0 m/s
 - time = 2.5 s

- acceleration \square deceleration \square
 - initial speed (u) = 5.5 m/s
 - final speed (v) = 2.3 m/s
 - time = 8 s

- acceleration \square deceleration \square
 - initial speed (u) = 0.9 m/s
 - final speed (v) = 2.1 m/s
 - time = 6 s

acceleration \square deceleration \square

- initial speed (u) = 3.6 m/s
- final speed (v) = 0 m/s
 - time = 6 s

- acceleration \square deceleration \square
 - initial speed (u) = 0.6 m/s
 - final speed (v) = 6.8 m/s
 - time = 4.1 s

- acceleration \square deceleration \square
 - initial speed (u) = 6.7 m/s
 - final speed (v) = 2.3 m/s
 - \bullet time = 5.5 s

acceleration \square deceleration \square

As a bobsleigh reaches a steep part of track, its speed increases

from 24 m/s to 36 m/s. This happens in 0.4 s.

Calculate the acceleration of the bobsleigh during this time.

An arrow hits a stationary target at 50 m/s and comes to rest in 0.1 s.

Calculate the deceleration of the arrow once it hits the target.

Starting from rest, a fireman slides down a pole with an acceleration of 1.2 m/s². His speed at the bottom of the pole is 3.6 m/s. Calculate the time taken to slide down the pole.

A bee, decelerating at 0.7 m/s², slows down from 6.7 m/s to 2.5 m/s. What time does this

take?

When a stationary rugby ball is kicked, it is in contact with a player's boot

a player's boot for 0.05 s. During this short time, the ball accelerates at 600 m/s^2 .

Calculate the speed at which the ball leaves the player's boot.

A helicopter is
flying at 35 m/s.
It then
th decelerates at
2.5 m/s² for 12 s.

Calculate the speed of the helicopter after the 12 s.

A speed of a conveyor belt is increased to 2.8 m/s by accelerating it at 0.3 m/s² for 4 s.

Calculate the initial speed of the conveyor belt.

A van decelerates at 1.4 m/s² for 5 s. This reduces its speed to 24 m/s.

Calculate the van's initial speed.

Velocity-Time Graphs

The motion of any object can be represented by a <u>line</u> drawn on a **velocity-time graph**:

constant/steady velocity
(zero acceleration)

increasing velocity
(constant/uniform acceleration)

decreasing velocity
(constant/uniform deceleration)

Describe the motion represented by the <u>line</u> on each **velocity-time graph**:

0 - 8 seconds:	from	m/s to	m/s.
(Constant/uniform).	_
8 - 11 seconds:	0	f m/s.	
11 - 18 seconds:	from _	m/s to _	m/s
(Constant/uniform).	

<u>0 - 25 seconds</u>: _____ of ____ m/s. ______ from ____ m/s to ____ m/s. (Constant/uniform _____). <u>75 - 100 seconds</u>: _____ from ____ m/s to ____ m/s. (Constant/uniform).

Draw the **line** on each **velocity-time graph** to represent the motion described:

0 - 5 seconds: Increasing velocity from rest (0 m/s) to 10 m/s. (Constant/uniform acceleration).

5 - 15 seconds: Constant velocity of 10 m/s.

15 - 20 seconds: Decreasing velocity from 10 m/s to rest (0 m/s).

With uniform/constant acceleration, a motorcycle takes 8 s to increase its velocity from rest to 20 m/s. The motorcycle continues to travel at this steady velocity for 4 s. It then increases its velocity to 45 m/s (constant/uniform acceleration) in 7 s.

0 - 30 seconds: Increasing velocity from 25 m/s to 40 m/s. (Constant/uniform acceleration).

30 - 60 seconds: Constant velocity of 40 m/s.

60 - 90 seconds: Decreasing velocity from 40 m/s to rest (0 m/s).

A helicopter, initially travelling at 80 m/s, decelerates constantly/uniformly to a velocity of 60 m/s in 25 s. For the next 50 s, it continues to travel at this steady velocity before decelerating constantly/uniformly to rest in a further 25 s.

Put numbers on each axis.

Maximum velocity = 9 m/s. Total time = 18 s.

A cyclist travels at a steady velocity of 9 m/s for 6 s before decelerating constantly/uniformly to a velocity of 2 m/s in 7 s. She then travels at this steady velocity for a further 5 s.

time/s

time/s

Put numbers on each axis.

Maximum velocity = 90 m/s. Total time = 20 s.

A racing car travels at a constant velocity of 10 m/s for 2 s before accelerating constantly/uniformly for 12 s to a velocity of 90 m/s. The car then immediately decelerates constantly/uniformly for 6 s to a velocity of 70 m/s.

Calculating Acceleration (or Deceleration) From a Velocity-Time Graph

By taking **velocity** and **time** values from a **velocity-time graph**, we can calculate the <u>acceleration</u> or <u>deceleration</u> of the object which the graph represents.

acceleration (a) =
$$\frac{v - u}{t}$$

$$= \frac{45 - 5}{8}$$

= 8s

Calculate the **acceleration** or **deceleration** represented by the <u>line</u> on each **velocity-time graph**.

• <u>Calculating Displacement From a</u> <u>Velocity-Time Graph</u>

The <u>area</u> under a <u>velocity-time graph</u> representing the motion of an object gives the <u>displacement</u> of the object.

For Example

This **velocity-time graph** represents the motion of a go-kart for the first 20 s of its journey.

Determine the <u>displacement</u> of the go-kart during these 20 s.

Area of triangle = 1/2 × base × height = 1/2 × 8 × 9 = 36

rectangle = base x height
= 12 x 9
= 108

Displacement = Area under velocity-time graph = 36 + 108 = 144 m

Displacement and Acceleration Calculations

Each of the following **velocity-time graphs** represent the motion of a vehicle.

For each graph, calculate any <u>accelerations</u> and <u>decelerations</u> of the vehicle, plus the vehicle's <u>displacement</u>:

