ELECTRICITYANSWERS

QUANTITIES FOR THE ELECTRICITY UNIT

For this unit copy and complete the table.

Quantity	Symbol	Unit	Unit Symbol	Scalar / Vector
Charge	Q	Coulombs	с	S
Current	I.	Ampere	Α	S
Voltage	V	Volt	V	S
Resistance	R	Ohm	Ω	S
Power	Р	Watt	w	S
Energy	E	Joule	J	S
Time	t	Second	S	S
Frequency	f	Hertz	Hz	S

THE ELECTRICITY UNIT IN NUMBERS

Quantity	Value
State the voltage of the mains supply.	230 V
State the frequency of the mains	50 Hz
State the usual maximum power for an appliance that can be fitted with a 3A fuse.	Up to 720 W
State the maximum power for an appliance that can be fitted with a 13A fuse.	Usually 720W- 2990W

No.	CONTENT	
Electrical Charge Carriers		
9.1	I can define electrical current.	

No.	CONTENT		
	Define the term <i>electrical current</i> .		
9.1.1	An electric current is the rate of flow of electric charge. Or the electric charge that flows per second.		
	Define the term one ampere.		
9.1.2	There is a current of one ampere when a charge of one coulomb flows (past a point) per second.		
9.1.3	Wany tall buildings have a thick strip of metal attached to the side of the building. This strip is used to protect the building from damage during electrical storms. Explain how this strip protects the building from damage.Metal strip is a conductor.More current will pass through (the strip than building).		
	Accept: 'it conducts (electricity)''it has less resistance (than the building)''charge/electrons will pass through' 'less/no current will pass through the building' Do not accept: 'lightning/electricity will pass through'		
9.2	I can carry out calculations using the equation with charge, electric current and time.		
	Write down the relationship between charge, electric current and time. Write the symbols and units used for each.		
9.2.1	Q = It		
	Q= charge (Coloumb), I=current (Ampere), t = time (second)		
	The current in a heater is 7.0 A, calculate the charge flowing through the heater in 30.0 seconds.		
9.2.2	Q = It		
	$\boldsymbol{Q}=\boldsymbol{7}.\boldsymbol{0}\times\boldsymbol{30}.\boldsymbol{0}$		
	<u>Q = 210 C</u>		
	A car headlamp uses a current of 2.0 A. Calculate the time the lamp must be switched on if 10.0 C of charge pass through it.		
9.2.3	Q = It		
	$10.0 = 2.0 \times t$		
	<u>t = 5.0 s</u>		

No.	CONTENT
	Two Coulombs of charge pass through a lamp in 6.0 seconds, calculate the current in the lamp.
9.2.4	Q = It
	$2 = \mathbf{I} \times 6.0$
	$\underline{I=0.3 A}$
	A lightning strike lasts for 2.8 ms and delivers 50.4 C of charge. Calculate the current during the lightning strike.
	t=2.8 ms = 2.8×10^{-3} s
9.2.5	Q = It
	$50.4 = \mathbf{I} \times 2.8 \times \mathbf{10^{-3}}$
	<u><i>I</i> = 15 A</u>
	A hair drier is switched on for 5 minutes with a current of 3 A, calculate the charge flowing through the hair drier during this time.
	t= 5 mins= 5×60=300s
9.2.6	Q = It
	$Q = 3 \times 300$
	<u>Q = 900 C</u>
	A switch is closed for 10 minutes. If 3600 C of charge pass through the switch in this time, calculate the current in the switch.
	t= 10 mins= 10×60=600s
9.2.7	Q = It
	$3600 = I \times 600$
	<u><i>I</i> = 6.0 <i>A</i></u>
	Calculate the charge that flows along a wire when 25 μA passes for 2 hours
	t= 2 hours= 2×60×60=7200s
0.2.0	I=25 μA=25×10 ⁻⁶ A
9.2.8	Q = It
	$\boldsymbol{Q} = \boldsymbol{25} \times \boldsymbol{10^{-6}} \times \boldsymbol{7200}$
	<u>Q</u> = 0. 18 <i>C</i>

No.	CONTENT			
	If a capacitor stores 20 mC of charge , calculate the time taken to discharge the capacitor if the average current in 0.4 μ A. Q=20 mC= 20×10 ⁻³ C I=0.4 μ A=0.4×10 ⁻⁶ A			
9.2.9	0 = It			
	$Q = R^{2}$ 20×10 ⁻³ = 0.4×10 ⁻⁶ × t			
	$t = 50\ 000\ s$			
	Which if you are interested using °'" button of $0^{\circ}0'50000$ "= is 13 h 53 m and 20 s			
9.2.10	A1 reading on ar ammeter A2 passing throug	et up as shown in the diagram. The nmeter A1 is 5.0 A. The reading on is 2.0 A. Calculate the charge gh the lamp in 30 s $I_t = I_1 + I_2$ $0 = 2.0 + I_2, I_2 = 3.0 A$		
	3.1	$0 = 2.0 + 1_2, 1_2 = 3.0 \text{ A}$ Q = It		
		$Q = 3.0 \times 30$		
		$\underline{Q} = 90 C$		
9.3	I can explain the difference between A.C. and D.C.			
	Explain, in terms of electron flow, the term <i>alternating current</i> .			
9.3.1	In A.C the. direction of movement of elect (and the magnitude changes too)	rons/charges continually reverses		
9.3.2	State if the mains supply is A.C. or D.C			
9.3.2	Mains is A.C.			
9.3.3	State the frequency of the mains supply. 50 Hz			
	Voltage Vp ≪Peak Voltage	(a) State the meaning of the term <i>peak voltage</i> .		
9.3.4		Peak voltage is the maximum voltage obtained during the A.C. cycle as shown in the diagram.		
	Peak Voltage	(b) State how the peak voltage of the mains compares with the voltage you would read on a		
	voltmeter. Draw a diagram to help you.	,		
	The peak voltage of an A.C supply is ALWAY ($\sqrt{2}$ or 1.414 × greater)	S greater than the quoted voltage		

No.	CONTENT			
	V/div=5V/div	V/div=0.1V/div	V/div=50 mV/div	
	V_{p} = 5 × 2 = 10 V	V_p = 0.1 × 4 = 0.4 V	V _p = 50 ×10 ⁻³ ×3 = 0.15V	
9.4.4	 The trace is produced from the mains supply. If the settings on the oscilloscope are not changed, sketch the trace that would be produced by the following A.C. supplies (i) Peak voltage 5 V at a frequency of 25 Hz (ii) Peak voltage 20 V at a frequency of 75 Hz. Mains frequency is 50Hz, (i) 25 Hz is half the frequency of the mains so there will be half the number of waves on the screen ie 2 waves (j) 75 Hz is 1.5x mains voltage so that will be the 4 waves on the screen plus the 2 from the 25 giving 6 waves (or 1.5x4) 			
9.4.5	The mains supply is quoted as 230 V. If connected to the mains supply, state which of the following devices would display a value of 230 V: (i) an oscilloscope this would show the peak voltage so would show 325Hz (ii) an A.C. voltmeter. this would show 230V as long as it was on the A.C.			
	setting.			
9.4.6	Two identical bulbs are lit by the supplies shown below. Explain which bulb will be the brighter.			
Pote	ntial Difference (\	/oltage)		
10.1	I know that a charged pa	article experiences a force	in an electric field.	
10.1.1	State the definition of ar An electric field is a regorigin.		iences a force of electrical	
State the causes of an 10.1.2				
	An electric field is cause	ed by charge.		

JA Hargreaves

No.	CONTENT			
	State the direction a negative charge would take along the field lines around the following charges			
10.6.2 ***	a) b)			
	A negative charge would move along a field line in the <u>opposite</u> direction indicated by the arrows.			
	State the direction a positive charge would take along the field lines around the following charges			
10.6.3	a) b) t t t t t t t t t t t t t t t t t t			
	A positive charge would <u>move along a field line in the direction</u> indicated by the arrows.			
10.7	I can define the potential difference (voltage) of the supply.			
10.7.1	 Copy and complete the following definitions choosing the correct ending from the list below. The voltage of an electrical supply is a measure of theenergy given to the charges in the circuit. 			
	Copy and complete the following definition			
10.7.2	1 volt is equivalent to 1 joule per coulomb			
	State what happens to the brightness of a bulb when the potential difference across it is increased.			
10.7.3	The brightness of the bulb increases as each coulomb of charge is transferring more energy to the components (voltage is equivalent to energy per coulomb)			
Ohm'	s Law			
11.1	I can make use of a V-I graph to determine resistance.			

JA Hargreaves

No.	CONTENT		
	thermistor and its resistance changes with temperature. As temperature increase resistance across the thermistor decreases. This causes a decrease in voltage drop across the thermistor. This voltage across the gate drops below 2.0 V and the MOSFET switches OFF. This causes the relay coil to demagnetise and causes the relay switch to switch off.		
	In the original exam question you would be able to work out the voltage drop across the thermistor as there are more parts to the question.		
11.3	I can describe the relationship between temperature and resistance of a conductor.		
11.3.1	State the meaning of the ter flow of electrons (current)	m resistance. Th	e opposition of a substance to the
	Explain the difference betwe	en a conductor a	nd an insulator
11.3.2		vith free electro	ons which allows electrons to flow
	An insulator is a material w through it.	ith no free elect	rons, so that electrons cannot flow
	State 6 materials that are conductors and 6 that are insulators. Display your answers in a table		
	Conductors	Insulators	NB do not include ITEMS
	(any metal) - but state them	Rubber	such as chair, table, etc. These could be made of a selection of materials, some
11.3.3	silver	Plastic	of which are conductors, come of which are
	Copper	Air	insulators. Don't forget
	Aluminium	Wood	some gases etc. Think periodic table from S1!
	Brass	Granite	
	Zinc / graphite	flax	
11.3.4	Gap 1 Gap 1 Gap 2 Gap 2 Gap 3 Gap 2 Gap 3 Gap 3 Gap 2 Gap 3 Gap 2 Gap 3 Gap 2 Gap 3 Gap 2 Gap 3 Gap 2 Gap 3 Gap 3		

No.	CONTENT				
		Gap	Filling		
		1	Conductor		
		2	Insulator		
		3	conductor		
	A student writes the following statements about electrical conductors.				
	I Only protons are free to move.				
11.3.5	II Only electrons	are free to mo	ve.		
	III Only negative	charges are fre	e to move.		
	Copy out the statement	(s) which is/are	correct.		
	Explain how the temper	ature affects the	e resistance of		
11.3.6	 a) a resistor a thermistor has a resistance that changes with temperature with a ceramic resistor they are able to dissipate the heat to the outside. Ohmic conductor resistance doesn't change with temperature. If some can be raised to sufficient enough temperature where it does change, then it's said to be non-ohmic at that point. Many 'conductors' are ohmic only within a specific temperature range. A non-ohmic is one whose resistance will vary with temperature. Depending on the material its resistance can increase or decrease. b) a wire as temperature increases the resistance increases c) a piece of metal, any conductor. As temperature increases the resistance increases. 				
11.3.7	State the relationship between temperature and resistance for a conductor. Increasing the temperature of a conductor increases the resistance of the conductor. As temperature increases, resistance increases. (They are proportional)				
11.4	I can describe how increasing the temperature of a conductor changes the resistance of the conductor.				
11.4.1	Resistor		resistance of a	aph showing how the resistor changes with the n it, <i>numerical values are</i>	
	currer	t			

JA Hargreaves

No.	CONTENT		
11.4.2	Sketch a graph showing how the current in a resistor varies with the voltage across it numerical values are not required.	Purchase state of the state of	
11.4.3	State the relationship between current and voltage for a resistor at constant temperature, numerical values are not required. See the diagram above	turent/A	
11.4.4	SQA Nat 5 2016 A student investigates the resistance of a resistor using the circuit shown. (a) Copy and complete the circuit diagram to show where a voltmeter must be connected to measure the voltage across resistor R. Voltmeter across resistor R (1) (b) Describe how the student obtains a range of values of voltage and current. increase/decrease/vary/change the resistance of the variable resistor <u>Accept:</u> 'change the number of cells/batteries' 'use batteries with different voltages' <u>Do not accept:</u> 'change the voltage of the battery' (c) The results of the student's investigation are shown. $\frac{Voltage across resistor R (V)}{1\cdot 0} \frac{Current in resistor R (A)}{0\cdot 20}$		

JA Hargreaves

No.	CONTENT		
11.5.1	Draw the circuit that can be used to show how the current through a resistor changes with voltage.		
11.5.2	Write down the formula giving the relationship between current voltage and resistance. Write what each letter stands for and the units of each quantity. V = IR V=voltage (Volt), I= current (Ampere), R= resistance (ohm)		
11.5.3	V/V I/A 0.096 0.007 0.821 0.056 1.722 0.114 2.664 0.176 3.612 0.24 4.58 0.303 5.55 0.368 6.56 0.433 7.52 0.498 8.52 0.562 (A) On graph paper, or in excel, plot a graph of voltage against current from the results given in the table below.		

	CONTENT
11.5.5	$R = \frac{1}{gradient}$ $R = \frac{1}{0.18} = 5.6 \Omega$ $Accept 5.3 - 5.6 \Omega$ State whether the resistance changes when the current in a resistor changes. Explain your answer.
11.3.3	No, the resistance doesn't change with current in a resistor, as it is an ohmic conductorso V/I remains constant=R
11.5.6	A student sets up the following circuit to investigate the resistance of resistor R. $I = 0.05 \\ 0.05 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.02 \\ 0.01 \\$
	 (ii) Using information from the graph, state whether the resistance of resistor R, increases, stays the same or decreases as the voltage increases. Justify your answer. As the resistance is a straight line graph through the origin the resistance stays the same as the voltage increases. (b) The student is given a task to combine two resistors from a pack containing one each of 33 Ω, 56 Ω, 82 Ω, 150 Ω, 270 Ω, 390 Ω Show by calculation which two resistors should be used to give: (i) The largest combined resistance; The largest combined resistance; R_t = R₁ + R₂ = 270 + 390 = 660 Ω (ii) The smallest combined resistance.

JA Hargreaves

No.	CONTENT	
	The smallest combined resistance will occur putting the resistors in	
	parallel. Here you want to use the smallest resistors	
	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2}$	
	$R_t R_1 R_2$	
	$\frac{1}{R_t} = \frac{1}{33} + \frac{1}{56} = \frac{89}{1848}$	
	$R_t = rac{1848}{89} = 21 \ \Omega$	
	Calculate the current through a 5.6 k Ω resistor when it is connected to a 230 V	
	supply.	
	V = IR	
11.5.7	$230 = I \times 5.6 \times 10^3$	
	$\frac{230}{5.6 \times 10^3} = I = 0.041 A$	
	5.6 × 10°	
	Calculate the voltage required to produce 10.9 A of current through a 3.3 x $10^4 \Omega$ resistor.	
11.5.8	V = IR	
	$V = 10.9 \times 3.3 \times 10^4$	
	$V=3.6 \times 10^5 V$	
	If a 12 V supply produces a current of 15 μ A through a resistor, calculate the resistance.	
11.5.9	V = IR	
11.3.7	$12 = 15 \times 10^{-6} \times R$	
	$\frac{12}{15 \times 10^{-6}} = R = 8.0 \times 10^5 \Omega$	
	A variable resistor can be adjusted from 10 Ω to 10 k Ω , and is connected to a	
	mains supply. Calculate the maximum current.	
	The current maximum will occur when the resistance is at a minimum as	
	the formula is $V = IR$, so for a given V I will be maximum when R is	
	minimum.	
	MAINS VOLTAGE = 230V	
11.5.10	V = IR	
	$230 = 1 \times 5.6 \times 10^{\circ}$	
	$\frac{230}{10} = I = 23.0 A$	
	I've no idea what this variable resistor is connected to but it can't be	
	plugged into the usually mains wiring as it would exceed the total current	
	supplied to the ring. This might be the current to an electric shower or	
	cooker.	
Practical Electricity and Electronics		
12.1	I can make measurements of I, V and R using appropriate meters in simple and complex circuits.	

No.	CONTENT
	Copy out the circuit that should be used to compare the reading on A1 with A2
	$\begin{array}{c} \begin{array}{c} & A_{1} \\ & & & \\ $
12.1.5	A circuit is set up as shown in the diagram. Copy the diagram and state which switch or switches must be closed to light bulb L1 To light L1 switches S3 and S1 need to be closed. (S2 and S3 would switch on L2)
12.2	I can describe the symbol, function and application of standard electrical and electronic components including cell, battery, lamp, switch, resistor, variable resistor, voltmeter, ammeter, LED, motor, microphone, loudspeaker, photovoltaic cell, fuse, diode, capacitor, thermistor, LDR, relay and transistor
12.2.1	 (i) Produce a table with four columns and in the first column write the following components. <i>cell, battery, lamp, switch, resistor, variable resistor, voltmeter, ammeter, LED, motor, microphone, loudspeaker, photovoltaic cell, fuse, diode, capacitor, thermistor, LDR, relay and transistor</i> (ii) In the second column draw the circuit symbols for each component. (iii) In the third column describe the function (iv) In the last column state the energy change in the component. <i>Ensure each column is properly titled.</i> See the sheet at the end of these answers. It ought to be stuck into your jotter and learn the symbols etc.
12.2.2	State the name of the electrical component represented by this symbol LED / light emitting diode.

JA Hargreaves

No.	CONTENT
No.	You can also draw an N Channel Enhancement MOSFET (iii) State the function of the transistor in this circuit. The transistor is acting as a switch. (b) The circuit is used to monitor temperature changes in a liquid. (ii) State what happens to the reading on the ohmmeter as the liquid cools. As temperature decreases the resistance the reading on the ohmmeter increases. (do not accept resistance increases- alone!) (ii) The thermistor is now connected to a battery and an ammeter as shown. Calculate the current in the circuit when the
	resistance of the thermistor is 1000 ohms. $V = IR$ 5. 0 = I × 1000 $I = \frac{5.0}{1000} = 0.005 A$ Draw the symbol for a Light Emitting
12.2.15	Diode.
12.2.16	State why a LED must be connected the correct way round in a circuit. An LED will not light if it is connected the other way around/ no current will pass through the LED flow of electrons
12.2.17	State why a resistor must be used in series with a LED. To limit the current through the LED

No.	CONTENT
	Draw a diagram showing how a LED can be operated from a 12V battery.
12.2.18	
12.2.19	Calculate the size of resistor needed in the circuit operated from a 12V battery if the LED operates at 1.8V 15mA $V_{s} = V_{LED} + V_{R}$ $12 = 1.8 + V_{R}, V_{R} = 10.2V$ $V = IR$ $10.2 = 15 \times 10^{-3} \times R$ $\frac{10.2}{15 \times 10^{-3}} = R = 680 \Omega$
12.2.20	In terms of energy, what useful energy change happens in (a) a microphone, (b) a thermocouple, and (c) a solar cell Sound \Rightarrow electrical heat \Rightarrow electrical light \Rightarrow electrical
12.2.21	 (a) (i) State what the abbreviation LDR stands for. Light dependent resistor State how the resistance of the LDR changes when more light reaches it. As light increases the resistance of the LDR decreases (for an NTC thermistor) (b) State how the resistance of a thermistor change when its temperature increases. As temperaure increases the resistance of the thermistor decreases State the purpose of a capacitor in a circuit.
12.2.22	A capacitor stores charge. (It can be used with a resistor in time delay circuits.)
12.2.23	Draw the circuit symbol for a capacitor.

JA Hargreaves

No.	CONTENT
	SQA Int 2 2015
12.4.4	Part of an alarm system is shown in the circuit. Light from an LED strikes the LDR. When the light is blocked the transistor switches on and the buzzer sounds. Explain how the circuit operated to make the buzzer sound.
	(Light on LDR decreases) so R _{LDR} increases
	V across LDR increases (to a level which switches on the transistor). The buzzer sounds
12.4.5	A photographic darkroom has a buzzer that sounds when the light level in the room is too high. The circuit diagram for the buzzer system is shown below. (a) (i) Name component X. npn transistor (ii)What is the purpose of component X in the circuit? It acts as a switch (c) The darkroom door is opened and the light level increases. Explain how the circuit operates to sound the buzzer. (Light on LDR increases when the door is opened) so R _{LDR} decreases V across LDR decreases, V across the resistor increases (to a level which switches on the transistor). The buzzer sounds (d) The table shows how the resistance of the LDR varies with light level.
	Light level (units) LDR Resistance (Ω)
	20 4500 50 3500
	80 2500
	The variable resistor has a resistance of 570 Ω . The light level increases to 80 units. Calculate the current in the LDR.
	$R_{total} = R_{LDR} + R_R$
	$R_{total} = 570 + 2500 = 3070 \Omega$
	V = IR 5. 0 = $I \times 3070$
	$\frac{5.0}{3070} = I = 0.0016 A \text{ or } 1.6mA$
	(e) State the purpose of the variable resistor R in this circuit. To adjust the light level that switches on the buzzer.

42 | Page

No.	CONTENT
	and the transistor switches on, causing the LED to light.
	(b) Name component: (i) X; npn transistor (ii) Y. LED
	(c) When operating normally, component Y has $2\cdot 0$ V across it and 10 mA in it. Calculate the resistance of resistor Z.
	$V_{s} = V_{LED} + V_{R}$ $12 = 2.0 + V_{R}, V_{R} = 10.0V$ $V = IR$ $10.0 = 10 \times 10^{-3} \times R$ $\frac{10.2}{10 \times 10^{-3}} = R = 1000 \Omega$
	(d) The car manufacturer decides to redesign the circuit using a MOSFET.
	(i) Draw the symbol for a n channel enhancement — MOSFET.
	(ii) State which component in the circuit shown above can be removed when the MOSFET is introduced. The transistor, component X
	(e) On the rear window of the car there is a heater that is used to remove any ice that forms on the glass.
	(i) At a temperature of 0 °C a mass of 0.050 kg of ice forms on the rear window. Calculate the energy needed to melt this ice into water at 0 °C.
	From the data sheet the value of the latent heat of fusion of water is $3\cdot 34 \times 10^5 \; Jkg^{\text{-1}}$
	$\mathbf{E} = \mathbf{ml}$
	$E = 0.050 \times 3 \cdot 34 \times 10^5 = 170000 \text{ J}$
	(167000)J
	(ii) In practice more energy than the value calculated in part (e) (i) needs to be supplied to melt the ice. Explain why more energy is needed. Energy losses heating the glass window, and the air around the ice.
12.5	I can apply the current and voltage relationships in a series circuit.
	State the equation to show
12 5 4	i. Current in a series circuit
12.5.1	$I_t = I_1 = I_2$ ii. Voltage in a series circuit.
	$V_t = V_1 + V_2$

No.	CONTENT
12.5.7	Calculate the total resistance for a 650 ohm, a 350 ohm, and a 1000 ohm resistor connected in series.
	$R_t = R_1 + R_2 + R_3$
	$R_t = 650 + 350 + 1000 = 2000 \Omega$
12 5 9	Calculate the total resistance for ten 120 ohm resistors in series.
	$R_t = R_1 + R_2 + R_3$
12.5.8	Adding 10 resistors of the same is the same as multiplying one resistor by 10
	$R_t = 10 \times 120 = 1200 \Omega$
	A string of fifty 15 ohm Christmas tree lights are connected in series. One burns out, they all burn out. Calculate the total resistance.
12.5.9	$R_t = R_1 + R_2 + R_3$
	Adding 50 resistors of the same is the same as multiplying one resistor by 10
	$R_t = 50 imes 15 = 750 \Omega$
	Two 100 ohm resistors are connected in series and they are connected to a 1.5 V DC battery. Determine the total current flowing in the circuit.
	$\boldsymbol{R}_t = \boldsymbol{R}_1 + \boldsymbol{R}_2 + \boldsymbol{R}_3$
12.5. 10	$R_t = 100 + 100 = 200 \Omega$
	V = IR
	$1.5 = I \times 200$
	$\frac{1.5}{200} = I = 0.0075 A = 7.5 mA$
	Two resistors are connected in series. One resistor has a resistance of 50 $\Omega.$ The
	total resistance is 67 Ω , calculate the resistance of the second resistor
12.5.11	$R_t = R_1 + R_2$
	$67 = 50 + R_2$
	$67 - 50 = R_2 = 17 \ \Omega$
12.5.12	The reading on the ammeter is $3 \cdot 0$ A. The reading on the voltmeter is $4 \cdot 0$ V. Determine the current in resistor R ₂ and the voltage across resistor R ₂
	$V_{s} = V_{r1} + V_{R2}$
	$\begin{array}{c c} R_1 & R_2 \\ \hline & & \\ R_1 & & \\ \hline \\ \hline$
	NB Don't be tempted to work out the
	resistance of R2- this is not the question.
12.6	I can apply the current and voltage relationships in a parallel circuit

No.	CONTENT
12 (1	State the equation to show
	i. Current in a parallel circuit
12.6.1	$I_t = I_1 + I_2$ ii. Voltage in a parallel circuit.
	$V_t = V_1 = V_2$
	(a) Calculate the total resistance for two 180 ohm resistors connected in parallel.
	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$
	$\frac{1}{R_P} = \frac{1}{180} + \frac{1}{180} = \frac{2}{180}$
	$R_P = \frac{180}{2} = 90 \ \Omega$
	(b) If the resistors are connected to a 9.0 V power supply determine the voltage across each resistor.
12.6.2	The voltage across each branch is 9.0V
	(c) If the resistors are connected to a 9.0 V power supply determine the current in each resistor.
	V = IR
	$9 = I \times 90$
	$\frac{9}{90} = I = 0.10 A$
	(d) Determine the total current in the circuit.
	$I_t = I_1 + I_2$
	$I_t = 0.10 + 0.10 = 0.20 A$

No.	CONTENT
	A 10 ohm, 20 ohm, and 100 ohm resistors are connected in parallel.
	(a) Calculate the total resistance of these three resistors.
	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $\frac{1}{R_P} = \frac{1}{10} + \frac{1}{20} + \frac{1}{100} = \frac{16}{100}$
	$R_{P} = \frac{100}{16} = 6 \Omega$
12.6.3	(b) If the resistors are connected to a 12.0 V power supply determine the voltage across each resistor.As the resistors are in parallel the voltage across each resistor is
	 12.0 V (c) If the resistors are connected to a 12.0 V power supply determine the current in each resistor.
	$V = IR$ $V = IR$ $V = IR$ $12 = I \times 10$ $12 = I \times 10$ $12 = I \times 10$ $\frac{12}{10} = I = 1.2 A$ $\frac{12}{20} = I = 0.6 A$ $\frac{12}{100} = I = 0.12 A$
	(d) Determine the total current in the circuit. $I_t = I_1 + I_2 + I_3$
	$I_t = 1.2 + 0.6 + 0.12 = 1.9 A$
	A string of fifty 15 ohm Christmas tree light are connected in parallel. One burns out, the rest will stay lit. Calculate the total resistance of the 49 resistors.
12.6.4	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$
	$\frac{1}{R_P} = 49 \times \frac{1}{15} = \frac{49}{15}$
	$R_P = \frac{15}{49} = 0.31 \Omega$
12.6.5	State the rule for calculating the resistance of any two resisitors, with the same resistance when connected in parallel.
	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$

JA Hargreaves

No.	CONTENT
	$V_p = \frac{R_p}{R_p + R_p} \times V_s$
	$V_p = \frac{10}{30} \times 12 = 4.0 V$
	$V_s = V_1 + V_2$
	$12 = 8 + V_2$
	$V_2 = 4.0 V$
	e) Calculate the current for each resistor in the parallel network.
	$V = IR$ $4 = I \times 30$ $\frac{4}{30} = I = 0.13 A$ $V = IR$
	$4 = I \times 15$ $\frac{4}{15} = I = 0.27 A$
	 When these are added together they should give the total current and the current that passes through the 20 Ω resistor (0.4A) which it does, suggesting you've got the answer correct. f) Calculate the power dissipated by each resistor
	15 Ω 20 Ω 30 Ω
	$P = I^2 R \qquad P = I^2 R \qquad P = I^2 R$
	$P = 0.27^2 \times 15$ $P = 0.40^2 \times 20$ $P = 0.13^2 \times 30$
	P = 1.09 W $P = 3.2 W$ $P = 0.51 W$
	Or work it out through the equation below. The slight differences in the answers are due to rounding in the current phase.
	P = IV $P = IV$ $P = IV$
	$P = 0.27 \times 4 = 1.08 W \qquad P = 0.40 \times 8 = 3.2 W \qquad P = 0.13 \times 4 = 0.52 W$
12.7	I can describe and explain practical applications of series and parallel circuits.
12.7.1	To turn on a kettle, the kettle plug should be placed in a socket and the socket switched on and then the kettle switch must also be switched on before the kettle heats up. State how the switches are connected in this arrangement. The switches are connected in series.

No.	CONTENT
12.7.2	Two headlights in a car can only be switched on when the ignition switch and the light switch are both on. Draw a circuit diagram to show how this circuit could be connected.
12.7.3	The interior light in a car only lights when either the drivers or passenger door is open. Draw a circuit diagram to show this circuit arrangement. s_2 $courtesy$ light
12.7.4	Brakes in a car only light when the ignition is switched on and the brake switch on the pedal is pressed. Draw a circuit diagram to show this circuit arrangement.
12.7.5	State whether the sockets in your house connected in series or parallel, you must justify your answer. Parallel- you can have the lights on individually, if they were in series, all sockets would need to be on to work any appliance.
12.7.6	 A state-of-the-art electric toaster uses radiation to produce the perfect slice of toast. (a) State the main energy change in the toaster.electrical⇒heat (b) State the most likely power rating for the toaster.1000W as most power is produced in appliances that produce heat 10 W 100 W 1000 W (c) State the size of fuse required in the toaster.13 A (it has a power rating. 720 W) (d) The toaster has a metal casing. How many wires does it have in its flex?

JA Hargreaves

JA Hargreaves

JA Hargreaves

58 | Page

JA Hargreaves

No.	CONTENT	
12.12.2	State what happens to the total resistance as resistors are added in a circuit in parallel. The total resistance decreases	
12.12.3	If the voltage remains constant state what happens to the current in a circuit as the resistance increases. The current decreases	
12.12.4	If the voltage remains constant state what happens to the current in a circuit as the resistance decreases. The current increases	
Electr	Electrical Power	
13.1	I can state the definition of electrical power.	
13.1.1	State the definition of electrical power. Power is the energy dissipated or produced per second, or the rate of using/producing energy	
13.1.2	A student makes a statement: "The power of a light bulb is 15 W." Explain what this statement mean, in terms of energy. Every second the light bulb transforms 15J of energy (into light and heat)	
	Dissipation is a term that is often used to describe ways in which energy is wasted. Any energy that is not transferred to useful energy stores is said to be wasted because it is lost to the surroundings.	
	Taking 3 separate appliances indicate ways in which the energy is dissipated.	
13.1.3	e.g	
13.1.3	Toaster energy is dissipated as heat with a small amount of light	
	Washing machine energy is dissipated as kinetic energy, and heat	
	TV the energy is dissipated as light and sound with heat given off as wasted energy.	
	(or any other response)	
	A kettle is rated as 2 KW.	
	(i) Explain what this term means. Every second the kettle transforms 2000 J of energy.	
13.1.4	 (ii) Does all the energy heat the water? You must justify your answer. No, some of the energy will be used to heat the air and the kettle. You know this as the kettle gets hot when the kettle is on. 	
MrsPQ	What/ Watt is the unit of power?! YES!	
13.2	I can use the word dissipated as it relates to power.	
	Copy the sentence below and state the word to which the sentence refers.	
13.2.1	The process in which an electric or electronic device produces heat (other waste energy) as an unwanted by-product of its primary action. power-dissipation	

No.	CONTENT
	A 100 W light bulb transfers 20 W of light.
13.2.2	State what happens to the remaining power.
	The remaining energy/power is dissipated as heat.
13.2.3	State the formula to calculate the power dissipated in a circuit. State the meaning and units of each quantity.
	$P = I^2 R$
	P= Power (Watt), I= current (Ampere), R=Resistance (ohm)
13.3	I am able to solve calculations relating to Power, Energy and time.
13.3.1	State the equation that links Power, Energy and time. State the units of each quantity.
	E = Pt
	E=energy (Joule), P= Power (Watt), I= current (Ampere), time (second)
	a) State the energy transformed each second by a drill rated at 800 W.
	E = Pt
	In one second
13.3.2	$E = 800 \times 1 = 800 J$
	b) From part a) state what you can infer about the energy used per second by an appliance and its power rating. Energy used per second is power
	Calculate the electrical energy transformed by the following appliances a) A 400 W drill used for 45 s.
	E = Pt
13.3.3	$E = 400 \times 45 = 18000 J$
	b) A 300 W food processor used for 20 s.
	E = Pt
	$E = 300 \times 20 = 6000 J$ Calculate the electrical energy transformed by an 800 W iron used for 40
	minutes.
13.3.4	t= 40 mins = 40×60=2400 s
	E = Pt
	$E = 800 \times 2400 = 1920000 J = 1.92 \times 10^{6} J$
	Calculate the electrical energy transformed by a 2.4 kW kettle that takes 5 minutes to boil the water inside it.
13.3.5	t= 5 mins = 5×60= 300 s
	E = Pt
	$E = 300 \times 2400 = 1920000 J = 7.2 \times 10^5 J$

No	CONTENT
No.	CONTENT
13.3.6	A miniature heater for making cups of tea is rated at 150 W. Calculate the time taken to boil the water if 45,000 J of energy are supplied.
	E = Pt
	$45\ 000 = 150 \times t =$
	$t = \frac{45\ 000}{150} = 300\ s$
	A 2.0 kW heater, a 150 W TV and a 100W light bulb are left on for 20 minutes. Calculate the total energy consumed by these appliances in this time. Total power consumed=2000+150+100=2250 W
13.3.7	E = Pt
	$E = 2250 \times (20 \times 60) = 2700000 J = 2.7 \times 10^6 J$
	An electrical components is operated at 4.0 V with a current of 0.50 A for 60
	seconds. Calculate the energy transferred to the component during this time.
	Either as one equationOr using two equations
13.3.8	$E = IVt \qquad P = IV \\ P = 0.50 \times 4.0 = 2.0W$
REPEAT	$E = 0.50 \times 4.0 \times 60$
	$E = 120 J$ $E = 2.0 \times 60 = 120 J$
	$E = 120$ f $E = 2.0 \times 60 = 120$ f
	A MES lamp rated at 3.5 V and with a current of 0.25 A is switched on and consumes 87.5 J of energy. Calculate the time the bulb has been switched on for
	Either as 1 equation Or using two
12.2.0	E = IVt $P = IV$
13.3.9	$P = 3.50 \times 0.25 = 0.875W$
	$87.5 = 3.50 \times 0.25 \times t \qquad \qquad E = Pt$
	$t = \frac{87.5}{(3.50 \times 0.25)} = 100 s$ $87.5 = 0.875 \times t$ $t = 100 s$
	$t = (3.50 \times 0.25)^{-1005}$ $t = 100 s$
13.4	I know the effect of potential difference (voltage) and resistance on the current in and power developed across components in a circuit. (complete section 13.5 before attempting this section)
13.4.1	SQA SG C 2011. A mains electric fire has two heating elements which can be switched on and off separately. The heating elements can be switched on to produce three different heat settings: LOW, MEDIUM and HIGH. The fire also has an interior lamp which can be switched on to give a log-burning effect. The circuit diagram for the fire is shown.
1	וות כווכמול מומצומוו זטו נווכ זווכ וז אוטאוו.

No.	CONTENT					
		a	$I = \frac{P}{V}$	(1/2)	2	Sig. fig. Range: 0·3, 0·26, 0·261
			$=\frac{60}{230}$ $= 0.26 \text{ A}$	(¹ / ₂) (1)		
		b i	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}}$ $\frac{1}{R_{\rm T}} = \frac{1}{46} + \frac{1}{92}$ $R_{\rm T} = 30.67 \ \Omega$	(¹ / ₂) (¹ / ₂) (1)	2	OR $R_{\rm T} = \frac{R_1 R_2}{R_1 + R_2}$ $= \frac{46 \times 92}{46 + 92}$ $R_{\rm T} = 30.67 \ \Omega$ $R_{\rm T} = \frac{1}{R_1} + \frac{1}{R_2}$ $R_{\rm T} = \frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_2}$ $R_{\rm T} = \frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_2}$
	Based		i $P = \frac{V^2}{R}$ $= \frac{230^2}{30 \cdot 67}$ = 1725 W Or calculate individual power of each heating element and add together SG C 2005	(½) (½) (1)	2	Must use value for R_T from 3(b)(i) or fresh start with correct value. Alternative solution: $I = \frac{V}{R} \qquad \text{Award (}^{1/2}\text{) for both} \\ \text{formulae} \\ = \frac{230}{30 \cdot 67} \qquad \text{ie } I = \frac{V}{R} \text{ and} \\ = 7 \cdot 5 \text{ (A)} \qquad P = IV$ THEN OR $P = IV \qquad I = \frac{V}{R} \text{ and} \\ = 7 \cdot 5 \times 230 \qquad P = I^2 R \\ = 1725 \text{ W (1)} \qquad \text{Award (}^{1/2}\text{) mark for all} \\ \text{OR} \qquad \text{substitutions correct} \\P = I^2 R \qquad \text{Award (1) mark for} \\ = 7 \cdot 5^2 \times 30 \cdot 67 \qquad \text{final answer} \\ = 1725 \text{ W} \\ \text{If } R = 138 \Omega \text{ from} \\ \text{b(i) then } P = 383 \text{W} \\ \text{Sig figs depend on candidates answer to} \\ \text{(b) part (i)} \end{cases}$
13.4.2	A mai after	ns v beir	acuum cleaner contains	ph sł	nows he	nat takes 3.0 s to reach full speed ow the current in the motor varies

No.	CONTENT				
	b i $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ (½) $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4}$ (½) $\frac{1}{R_T} = 0.17 + 0.25 + 0.25$ $R_T = 1.5 \Omega$ (1) b i Wrong equation used eg $R_T = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ then zero marks Accept <i>imprecise</i> working towards a final answer $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{2} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{2} + \frac{1}{4} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{6} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$ $\frac{1}{R_T} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1.5 \Omega$				
	b ii The reading decreases/gets smaller/reduces 1 Any clear statement that the reading decreases b ii B The resistance increases (so the current decreases) 1 NO dotted line from part (ii) A Explanation must link current decreases with increase of resistance 1 Explanation must link current decrease with increase of resistance				
13.5	I can use appropriate relationships to solve problems involving power, potential difference (voltage), current and resistance in electrical circuits				
13.5.1	State the relationship between current, voltage and power. P = IV				
	(a)State the relationship between current, resistance, and power.				
	$P = I^2 R$				
13.5.2	(b) Show that this relationship is found by combining P=IV and V=IR. P = IV and $V = IR$				
	$Replace \ the \ V \ in \ P = IV$ $P = I \times I \times R$				
	Collect the terms				
	$\boldsymbol{P} = \boldsymbol{I}^2 \boldsymbol{R}$				

No.	CONTENT
	(a)State the relationship between voltage, resistance, and power. V^2
13.5.3	$P = \frac{V^2}{R}$ (b) Show that this relationship is found by combining P=IV and V=IR. P = IV and V = IR
13.3.3	Replace the I in $P = IV$ $P = \frac{V \times V}{R}$
	Collect the terms $P = \frac{V^2}{R}$
	A toaster is rated at 230V 1200W. Calculate the current in the toaster when it is operating normally.
13.5.4	P = IV
13.3.4	$\frac{1200}{230} = I = 5.2 A$
13.5.5	State the relationship between current, resistance, and power. Also write this as a triangle and say what each letter stands for $P = I^2 R$
101010	$P = I^2 R$ P=Power, I= current, R=resistance
13.5.6	Show that this relationship is found by combining P=IV and V=IR. REPEAT
	A 12 V battery supplies a motor which has a resistance of 18 Ω , calculate the current in the circuit. V = IR
13.5.7	$12 = I \times 18$ $\frac{12}{18} = I = 0.67 A$

No.	CONTENT
	An LED which is in series with a 1.2 k Ω resistor must be supplied with 5 mA of current to operate. When lit, the p.d. across the LED is 0.6 V.
	Calculate the potential difference across the resistor. V = IR
13.5.8	$V = 5 \times 10^{-3} \times 1.2 \times 10^{3}$ $V = 6 V$
	Calculate the minimum supply voltage required.
	$V_s = V_1 + V_2$
	$V_s = 6 + 0.6 = 6.6V$
	A vacuum cleaner is connected to the UK mains (rated at 230 V) and 8.9 A of current flows through the circuit. Calculate the power being transformed.
	P = IV
13.5.9	$P = 8.9 \times 230 = 2047V$
	$\underline{P=2000V}$
	Answer to 2 sig fig
	A heater has a power of 1000W, and the current in it is 5A, calculate the resistance of the heater.
13.5.10	$P = I^2 R$
13.3.10	$1000 = 5^2 \times R$
	$\frac{1000}{25}=R=40\Omega$
	The resistance of a kettle is 21 Ω and its power is 2200W. Calculate the current in the kettle when it is working normally.
	$\boldsymbol{P} = \boldsymbol{I}^2 \boldsymbol{R}$
_	$2200 = I^2 \times 21$
13.5.11	$\frac{2200}{21} = I^2$
	$I = \sqrt{\frac{2200}{21}} = 10.2 A$

No.	CONTENT				
	A mains electric fire is rated at 2.0 kW. (a) State the voltage across the electric fire. 230 V (b) Calculate the current in the heating element when it is switched on. P = IV $2000 = I \times 230$ $\frac{2000}{230} = I = 8.7 A$				
13.5.12	(c) Calculate the resistance of the heating element $Use V = IR \text{ or } P = \frac{V^2}{R}$				
	$V = IR$ $\frac{230 = 8.7 \times R}{\frac{230}{8.7} = R} = 26 \Omega$	$P = \frac{V^2}{R}$ $2000 = \frac{230^2}{R}$ $R = \frac{230^2}{2000} = 24\Omega$			
13.5.13	SQA N5 2014 A toy car contains an electric circuit $12 \cdot 0$ V battery, an electric motor and The circuit $12 \cdot 0^{12 \cdot 0^{V}}$ (a) Switch (a) Switch Calculate the operating. (b) Switch 2	I two lamps. diagram is shown.			

JA Hargreaves

No.	CONTENT				
13.5.15	230 V~ 50 Hz 920 W model: HD 1055 The rating plate on an electrical appliance is shown. Calculate the resistance of the appliance. $P = \frac{V^2}{R}$ $920 = \frac{230^2}{R}$ $R = \frac{230^2}{920} = 57.5 \Omega$ $R = 58\Omega$				
13.5.16	A torch bulb is rated 12V, 60mA. Calculate the power dissipated in the bulb when it is operating normally. $P = IV$ $P = 60 \times 10^{-3} \times 12 = 0.72 W$				
13.5.17	SQA N5 2017 SP (a) A student sets up the following circuit. (i) Determine the total resistance in the circuit. (ii) Calculate the current in the circuit. (iii) Calculate the power dissipated in the 15 Ω resistor. (b) The circuit is now rearranged as shown. State how the power dissipated in the 15 Ω resistor compares to your answer in (a) (iii). You must justify your answer.				

No.	CONTENT					
	(i)			1		
	(i)	$R_T = 75 \Omega$		1		
	(ii)	V = IR	1	3	Or consistent with (a)(i)	
		$15 = I \times 75$	1		Accept 0·2, 0·200, 0·2000	
		$I = 0 \cdot 20 \ A$	1			
	(iii)	$P = I^2 R$	1	3	Or consistent with (a)(ii)	
		$P = 0 \cdot 20^2 \times 15$	1		Accept 0.6, 0.600, 0.6000	
		P = 0.60 W	1			
		(The power dissipated is) greater (than that in (a)(iii))	1	3	'Must justify' question	
		The total resistance of the circuit is now less	1			
		The current in the circuit is now greater	1			
	section	The cables used in the National Grid are made of aluminium with a cross ectional area of 25 cm ² . These have a resistance of 10-5 $\mu\Omega m^{-1}$, and so a 50 km ine has a resistance of 0.5 Ω . (A) Calculate the power loss in the 50 km line if it has a current of 1200 A in				
	R-=	it. =10.5 μΩ ×50×10 ³ = 0.5 Ω				
		•	$= I^2$	R		
		$P = 1200^2 \times 10^{10}$	_		< 10 ⁵ W	
13.5.18						
	(B)	The current is reduced to 100 A l end, calculate the power loss wi	-	-	-	
		Р	$= I^2$	R		
		$P=100^2\times 0$. 5 =	5.0×	10 ³ W	
	(C) If the transformers lose 50 kW because they are not 100 % efficient, calculate the total power loss from both the line and the transformers. Total power loss = $2 \times 50 \text{ kW} + 5.0 \text{ kW} = 105 \text{ kW} = 1.1 \times 10^5 \text{ W}$					
	Based	on SQA SG C 2007				
13.5.19	Two groups of pupils are investigating the electrical properties of a lamp.					
	(a) Gro	oup 1 is given the following equip	ment	t:		

JA Hargreaves

No.	CONTENT			
	A A A A A A A A A A A A A A			
	(b) The results of both groups are combined and recorded in the table below. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
13.6	I know when I would use a 3A fuse and when a 13A fuse for appliances.			
13.6.1	State the purpose of the fuse fitted in the plug of an appliance. The fuse protects the wiring			
13.6.2	Explain how a fuse work. If a large current passes through the appliance the fuse melts cutting off the current, making the appliance safe.			
13.6.3	Explain why different sizes of fuses are required in household appliances. Faults can develop which could be dangerous, but could be under 13 A, using a fuse with too low a rating would cause it to melt each time the appliance was used.			
13.6.4	 (a) State the fuse value required in most appliances up to 720W. 3A (b) State the value of a fuse required in most appliance above 720W 13A (c) State the maximum power rating of an appliance that can be fitted with a 13A Either 3120 W (based of the figures here or based on V=230V then 2990 W) 			
13.6.5	The mains supply voltage in the UK is quoted as 230 V. State a value for the peak voltage and the mains and frequency in the UK? 325V (it is greater than 230, actually 1.414 x greater)			
13.6.6	Explain why some appliances with a power rating below 720 W, (particularly those containing an electric motor) which you might expect to have a 3A fuse are actually required to have a fuse with a higher rating. The current at switch on could be high, and higher than 3A which would melt the fuse and the appliance would not work.			
13.6.7	Explain why it is important to fit the correct fuse in an appliance. (<i>i.e. explain what can happen if the wrong fuse is placed in the appliance</i>) The fuse should be the weakest link. A large current could pass through the appliance which could set the wiring/flex on fire. The fuse should melt before the current gets too large to melt the flex.			

No.	CONTENT					
13.7	I could select the appropriate fuse rating given the power rating of an electrical appliance					
13.7.1	Model: FB67P230 V a.c.50 Hz290 WImage: Source and the state of th					
13.7.2	Choose the correct size of fuse for appliances of Below 720W use a 3A fuse, above 720W use a 13 A fuse, unless a high switch on current at the start.6W600W800W1000W2000W2500W3A3A13A13A13A13A					
13.7.3	State the energy change in most appliances that have the greatest power rating. Electrical ⇒heat					
13.7.4	Explain, using the correct equation, how you would calculate the correct fuse for an appliance. $P = IV$ $P = I \times 230$					
13.7.5						

INPUT, PROCESS, OUTPUT DEVICES AND THEIR USES

<u>Name of</u> <u>device</u>			<u>Energy change</u>
Loudspeaker		In CD Player, tannoy, public address system, karaoke machine	electrical→sound
Motor	-M-	washing machine, car wiper motor, food processor, vacuum cleaner	electrical→kinetic
Ammeter	-(A)-		
Voltmeter	- v -		
Relay		switching on high voltage equipment eg control panels	electrical→kinetic
Diode			
LED	\rightarrow	analogue- tuner indicator on radio digital-on/off power indicators	electrical→light
Lamp		analogue-atmospheric lighting, digital-table lamp	electrical→ heat & light
Microphone	\bigcirc	tannoy, public address system, karaoke machine	sound→electrical
Solar Cell	+	power supply for a calculator, solar powered torch	light→electrical
Thermistor		thermometer for an aquarium	heat→electrical

	· · · ·		
<u>Name of</u> <u>device</u>			<u>Energy change</u>
Light Dependent Resistor		burglar alarms, automatic drive lights	light→electrical
Capacitor		pedestrian crossing patrols	
Potentiometer		volume control in a stereo, boost control in a vacuum cleaner	
Switch	-o´ o-	on a table lamp	
Npn transistor		SWITCH >0.7V Acts as a switch when a voltage of 0.7 V is applied across the base and emitter	no energy change
N-channel enhancement MOSFET		Acts as a switch when a voltage of approximately 2 V is applied across the gate and the source.	
cell			Chemical energy →electrical
battery			Chemical energy →electrical
Resistor			

LDR is short for Light Dependent Resistor- remember it as Light Drops Resistance