$$
d=v t
$$

$$
d=\bar{v} t
$$

$$
s=v t
$$

$$
s=\bar{v} t
$$

$$
a=\frac{v-u}{t}
$$

$$
F=m a
$$

$$
W=m g
$$

Speed, distance and time where the speed is constant

Average speed, distance and time

Velocity, displacement and time where the velocity is constant

Average velocity,

 displacement and timeAcceleration, initial and final velocity, and time

Newton's $\mathbf{2}^{\text {nd }}$ law unbalanced force, mass and acceleration

Weight, mass, and gravitational field strength

Work done, unbalanced force, and distance

$$
d=v t
$$

$$
d=\bar{v} t
$$

$$
s=v t
$$

$$
s=\bar{v} t
$$

$$
a=\frac{v-u}{t}
$$

$$
F=m a
$$

$$
W=m g
$$

Speed, distance and time where the speed is constant

Average speed, distance and time

Velocity, displacement and time where the velocity is constant

Average velocity,

 displacement and timeAcceleration, initial and final velocity, and time

Newton's $\mathbf{2}^{\text {nd }}$ law unbalanced force, mass and acceleration

Weight, mass, and gravitational field strength

Work done, unbalanced force, and distance

$$
E_{P}=m g h
$$

$$
E_{K}=\frac{1}{2} m v^{2}
$$

Kinetic energy, mass, and velocity

Charge, current, and time

Voltage, current, and resistance

Voltage dividers: comparing component voltages and resistances to the supply voltage and total resistance

Voltage dividers: component

 voltages and resistances
Potential energy, mass, gravitational field strength, and height

$$
Q=I t
$$

$$
V=I R
$$

$$
V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{S}
$$

$$
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}
$$

$$
P=\frac{E}{t}
$$

$$
P=I V
$$

$$
E_{P}=m g h
$$

$$
E_{K}=\frac{1}{2} m v^{2}
$$

Kinetic energy, mass, and velocity

Charge, current, and time

Voltage, current, and resistance

Voltage dividers: comparing component voltages and resistances to the supply voltage and total resistance

Voltage dividers: component

 voltages and resistances
Potential energy, mass, gravitational field strength, and height

$$
Q=I t
$$

$$
V=I R
$$

$$
V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{S}
$$

$$
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}
$$

$$
P=\frac{E}{t}
$$

$$
P=I V
$$

$$
P=I^{2} R
$$

Power, current and resistance

$$
P=\frac{V^{2}}{R}
$$

$$
E_{h}=c m \Delta T
$$

$$
p=\frac{F}{A}
$$

$p V$
 $\frac{p V}{T}=$ constant

$$
p_{1} V_{1}=p_{2} V_{2}
$$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

Power, voltage and resistance

Heat energy, specific heat capacity, mass, and temperature change

Pressure, force, and area

Gas laws: combined equation

Gas laws: pressure and volume

Gas laws: volume and temperature

Gas laws: pressure and temperature

$$
P=I^{2} R
$$

Power, current and resistance

$$
P=\frac{V^{2}}{R}
$$

$$
E_{h}=c m \Delta T
$$

$$
p=\frac{F}{A}
$$

$p V$
 $\frac{p V}{T}=$ constant

$$
p_{1} V_{1}=p_{2} V_{2}
$$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

Power, voltage and resistance

Heat energy, specific heat capacity, mass, and temperature change

Pressure, force, and area

Gas laws: combined equation

Gas laws: pressure and volume

Gas laws: volume and temperature

Gas laws: pressure and temperature

$$
E_{h}=m l
$$

$$
R_{T}=R_{1}+R_{2}+\cdots
$$

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots
$$

Absorbed dose, energy, and mass

$$
H=D W_{R}
$$ heat, and mass

Total resistance of resistors in series

Total resistance of resistors in parallel

$$
T=\frac{1}{f}
$$

Frequency and period

$$
A=\frac{N}{t}
$$

Activity, Number of decays, and time

$$
D=\frac{E}{m}
$$

Equivalent dose, absorbed dose, and radiation

Heat energy, specific latent weighting factor

$$
\dot{H}=\frac{H}{t}
$$

$$
E_{h}=m l
$$

$$
R_{T}=R_{1}+R_{2}+\cdots
$$

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots
$$

Absorbed dose, energy, and mass

$$
H=D W_{R}
$$ heat, and mass

Total resistance of resistors in series

Total resistance of resistors in parallel

$$
T=\frac{1}{f}
$$

Frequency and period

$$
A=\frac{N}{t}
$$

Activity, Number of decays, and time

$$
D=\frac{E}{m}
$$

Equivalent dose, absorbed dose, and radiation

Heat energy, specific latent weighting factor

$$
\dot{H}=\frac{H}{t}
$$

