LO RADIATION ANSWERS

QUANTITIES FOR THE RADIATION UNIT

For this unit copy and complete the table.

Quantity	Symbol	Unit	Unit Symbol	Scalar / Vector
Time	t	second	s	S
Activity	Α	Becquerel	Bq	S
Equivalent Dose	н	Sievert	Sv	S
Absorbed Dose	D	Gray	Gy	S
Absorbed Dose Rate	Ď	Gray/day Gray/year	Gy/h, Gy/y	S
Equivalent Dose Rate	Ĥ	Sieverts/ hour, Sieverts/day, Sieverts/ year	Sv/h, Sv/d	S
Radiation weighting factor	WR			S
Energy	Е	Joule		S
Mass	m	Kilogram	kg	S
Number of radioactive nuclei decaying	N		_	S

THE RADIATION UNIT IN NUMBERS

Quantity	Value
State the charge on an alpha particle	(+2), +3.2×10 ⁻¹⁹ C
State the charge on a beta particle	(-1) , -1.6×10 ⁻¹⁹ C
State the mass of an alpha particle	6.64 ×10 ⁻²⁷ kg
State the mass of a beta particle	9.11×10 ⁻³¹ kg
State the average annual background radiation in the UK	2.2 mSv
State the average annual effective dose limit for a member of the public in the UK	1 mSv
State the average annual effective dose limit for radiation workers in the UK.	20 mSv
State the radiation weighting factor of an alpha particle	20
State the radiation weighting factor of a beta particle	1

Quantity	Value
State the radiation weighting factor of a gamma particle	1
State the radiation weighting factor of a fast neutron	10
State the radiation weighting factor of a slow neutron	3
State the speed of a gamma wave in air	3 × 10 ⁸ ms ⁻¹

No.	CONTENT
Nuclea	ar Radiation
20.1	I understand the nature of alpha, beta and gamma radiation: including the relative effect of ionization, their relative penetration.
20.1.1	Copy the simple diagram of an atom and label the nucleus, proton, neutron and electron. State the charge on each particle.
	Electron (-1), -1.6 × 10 ⁻¹⁹ C Proton (+1), +1.6 × 10 ⁻¹⁹ C Neutron (0) 0 Nucleus Energy Shell
20.1.2	Define the term ionisation (repeat)
	Ionisation is the gaining or losing of electrons from atoms
20.1.3	State from where all ionizing radiations originate.
	The nucleus
20.1.4	Describe the following in as much detail as you can a) Alpha particle b) Beta particle c) Gamma radiation

No.		CONTENT						
Alpha	very st	Symbol = α , He nucleus, 2 protons and 2 neutrons, highly ionising, travels very short distances in air (a few cm), stopped by paper and anything more dense, charge +2 or 3.2×10^{-19} C. Radiation weighting factor of 20						
Beta	proton charge	Symbol β , fast moving electron, produced when neutron is converted to a proton, and the process creates an electron and an electron antineutrino, charge -1 or or -1.6 × 10 ⁻¹⁹ C. Travels a few cm in air and stopped by a few mm of aluminium or anything denser. Radiation weighting factor of 1						
Gamma	no cha cm of	rge and no mass. It trave lead or several metres o	ergy wave travelling at 3 ×10 ⁸ ms ⁻¹ , els through air and is partially stopped of concrete. It has a radiation weight iation and can travel many km in air.	l by a few				
20.1.5	State v	what happens to radiation	energy as it passes through the mediur	n.				
	Radiat	ion energy is absorbed a	s it passes through the medium					
20.1.6		the approximate range t radiation.	hrough air, and absorption of alpha,	beta and				
	adiation <mark>Ipha,</mark> α	Range in air A few cm	Minimum absorbing material A sheet of paper					
	eta, β	A few m	A few mm of Al					
G	amma, ₎		A few cm of lead or several m of concrete.					
20.1.7		e how one of the effect lowing web address migh	s of radiation is used in a detector of thelp.	radiation.				
20.1.7	http://www.darvill.clara.net/nucrad/detect.htm							
Detecto Radiatio		Effect on which they w	ork					
Geiger Muller		GM tubes work by <u>ionisation</u> . Best at detecting alpha particles, because -particles ionise strongly.						
		the thin wire. When a p from an Argon atom. Th and as it rushes towar electrons from Argon single incoming particle	Argon gas, and a high voltage is apploarticle enters the tube, it pulls an electron is attracted to the central ds the wire, the electron will knock atoms, causing an "avalanche". Thus will cause many electrons to arrive which can be amplified and counted.	ectron wire, other is one				
Photogra	aphic	Radioactivity will darke	en ("fog") photographic film,					
Film		are sent to a labor	industry USED TO wear "film badges" atory to be developed, just like vs us to measure the dose that each v	your				

No.			CONTENT		
			d different "windows" with different thickness and owing the type of radiation to be identified.		
Gold electroso	cope l		nisation. When an electroscope is charged, the gold ut, because the charges on the gold repel the charges stalk.		
	When a radioactive source comes near, the air is ionised, a starts to conduct electricity. This means that the charge can "lea away, the electroscope discharges and the gold leaf falls.				
Spark Co			a little like the GM tube. A high voltage is applied gauze and the wire.		
	9		oactive source is brought close, the air between the he wire is ionised, and sparks jump where particles		
Cloud Ch			by ionisation. Alpha or beta particles leave trails in the chamber.		
	S	pirits), whic	r contains a supersaturated vapour (e.g. methylated ch condenses into droplets when disturbed and ionised ge of a particle		
Bubble		Particles leave trails of tiny bubbles in a liquid.			
Chamber	The chamber would be surrounded by powerful magnets, so any charged particles passing though the chamber would move ir curved paths. The shapes of the curves tell us about the charge mass and speed of each particle, so we can work out what they are.				
	In an experiment, radiation from a sample of radium is passed through an electric field.				
	-	t into three the diagram	different components (as below).		
	. ,	ame the rad nd (iii).	diations labelled (i), (ii)		
20.1.8	(i) Alp		It is positively charged so is attracted towards the negatively charged plate		
20.1.0	(ii)	Gamma	It is not charged so continues in a straight line		
			Is negatively charged so is attracted towards the positively charged plate		
	(b) Which radiation is deflected most by the electrostatic field? Beta				
			nction of the lead shield?		
			e radiation not travelling in the right direction and to		
	-	-	cles from the outside getting in periment carried out in an evacuated chamber?		
	. ,		on travel as far as the photographic film and do not ionise		

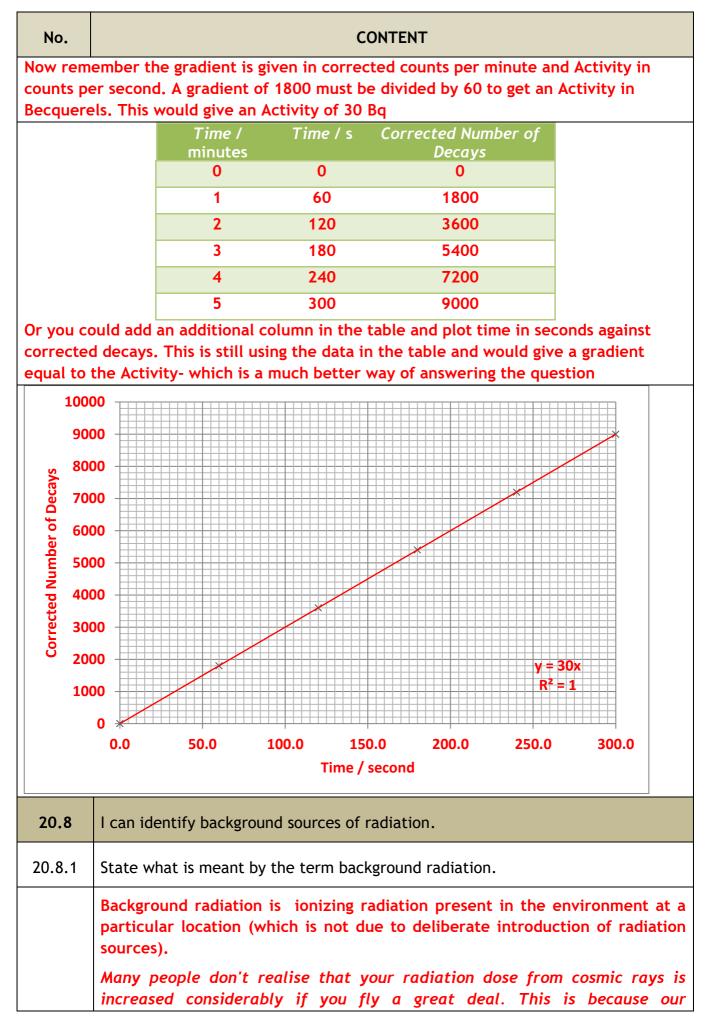
No.	CONTENT					
	the air. (e) What is the purpose of the photo To detect the radiation	ographic film?				
20.1.9 OEQ	Alpha, beta and gamma are types of nuclear radiation, which have a range properties and effects. Using your knowledge of physics, comment on the similarities and/or differences between these types of nuclear radiation.					
		some of the following and use previous red to specify things like mass, charge,				
	Similarities	Difference (you need to state these in more detail)				
	All originate from atomic nucleus	Charge, mass,				
	All can kill or cause damage to cells	range in air,				
	D=E/m	structure				
	H=Dw _R	lonising properties, lonising density				
		Different dose equivalents and radiation weighting factors, so different biological harms				
	Here is a possible answer. NO idea if I'd get the full 3 marks!					
	Alpha, Beta and Gamma are all forms of ionising radiation that originate in the nucleus. They can all cause damage to tissue and kill and change the nature of cells as they pass through them.					
	Alpha is a He nucleus, so has a charge of $+3.2 \times 10^{-19}$ C so it is highly ionising and is absorbed by a few cm of air or a sheet of paper.					
	proton and emitting a beta particle charge of -1.6 x 10^{-19} C. It is much le	is formed by a neutron changing to a and an antineutrino. It has a negative ess massive than an Alpha particle by 5 cf 6.64 x 10^{-27} kg) but can travel a few				
		ic wave with no mass and no charge and It is the least ionising so the most				
	type is given a separate radiation w	ass and other properties each radiation eighting factor, which takes account of Alpha has a w_R of 20, Beta w_R of 1 and				
20.2	I can explain the term 'ionisation'.					
20.2.1	Explain the term ionisation.					

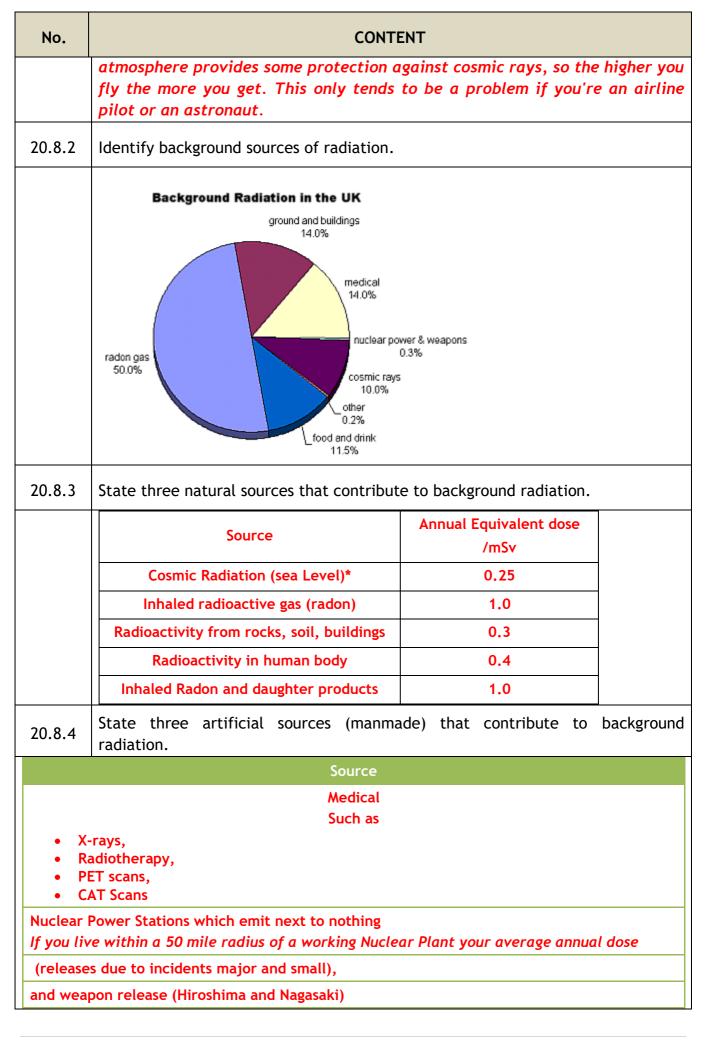
NATIONAL 5 COURSE QUESTIONS

No.	CONTENT						
	Ionisation is the gaining or losing of electrons from atoms						
20.1.2	State what r	emains aft	er an atom	has been ionise	ed.		
	The atom ha	as become	an ion.				
20.3	I can state t ionising.	that which	nuclear rad	diation is most	ionising, ar	nd which is the lea	ast
	From the list	t of alpha,	beta and ga	amma radiation	١,		
20.3.1	.,		s least ionis s most ionis	sing. <mark>Gamma</mark> sing <mark>Alpha</mark>			
20.3.2	Give a piece	of eviden	ce to show 1	hat your answe	er to 20.3.1	is correct.	
	This can be 20.1.8	This can be seen from the tracks in a bubble chamber or cloud chamber, see 20.1.8					
20.3.3	State the eff	fect radiat	ion can hav	e on living cells	5		
	Radiation ca	an kill livir	ng cells or c	hange the nat	ure of living	g cells.	
	The biological effect of radiation depends on the absorbing tissue and the nature of the radiation						the
	Equivalent dose, measured in Sieverts, takes account of the type and energy of radiation.					r gy	
20.4		I can state the distances alpha, beta and gamma radiation can travel in air and the penetration through different materials.					and
	State the approximate distance (range) travelled in air by:						
20.4.1	· ·	•	a few cm i				
	b) beta particles: <mark>a few m in air</mark> c) gamma rays <mark>many km in air</mark>						
	State the minimum object, and the thickness that can stop:						
	a) alpha particles a single sheet of paper						
20.4.2	b) beta particles a few mm of aluminium						
	 c) gamma rays partly absorbed by a few cm of lead or several metres o concrete. 						of
			e table belo	w to show if ea	ich type of i	radiation passes or	r is
	absorbed by	-					
20.4.3				Effect of passing	g radiation t	hrough	$\left \right $
	Type of radiation	Range in air	0.1 mm paper	3 mm aluminium	3 mm lead	10 m concrete	
	Alpha	Few cm	Absorbed	absorbed	absorbed	Absorbed	1

No.		CONTENT					
	Beta	a l	Few m	None	absorbed	absorbed	Absorbed
	Gamn	na	Many km	None	none	Partly absorbed	Absorbed
	X-ray	/S	Many km	None	none	Partly absorbed	Absorbed
20.4.4	Describ	e or	ne use of rad	diation base	ed on the fact t	hat radiatio	n is easy to detect.
Detector Radiatio		Eff	ect on whic	h they wor	k		
Geiger M	luller		tubes wor ause -parti			detecting	alpha particles,
The tube is filled with Argon gas, and a high voltage is applie the thin wire. When a particle enters the tube, it pulls an elec from an Argon atom. The electron is attracted to the central and as it rushes towards the wire, the electron will knock of electrons from Argon atoms, causing an "avalanche". Thus single incoming particle will cause many electrons to arrive a wire, creating a pulse which can be amplified and counted.				pulls an electron the central wire, will knock other nche". Thus one s to arrive at the			
Photogra	aphic	Rac	dioactivity v	vill darken	("fog") photog	raphic film,	,
Film	Film Workers in the nuclear industry USED TO wear "film badges" w are sent to a laboratory to be developed, just like photographs. This allows us to measure the dose that each wo has received different "windows" with different thickness materials allowing the type of radiation to be identified.			just like your hat each worker it thickness and			
Gold electroso	leaf cope	This uses ionisation. When an electroscope is charged, the gold leaf sticks out, because the charges on the gold repel the charges on the metal stalk.					
		When a radioactive source comes near, the air is ionised, and starts to conduct electricity. This means that the charge can "leak" away, the electroscope discharges and the gold leaf falls.					charge can "leak"
Spark Counter			s works a ween the g			A high vo	oltage is applied
			When a radioactive source is brought close, the air betweer gauze and the wire is ionised, and sparks jump where part pass				
Cloud Chamber			ese work b vapour in	·	· · · · · · · · · · · · · · · · · · ·	eta particle	es leave trails in
	The chamber contains a supersaturated vapour spirits), which condenses into droplets when dist by the passage of a particle		-				
Bubble		Par	ticles leave	trails of ti	ny bubbles in a	a liquid.	
Chamber	r	cha cur	arged parti ved paths. ss and spee	cles passin The shape	g though the s of the curve	chamber es tell us al	magnets, so any would move in oout the charge, k out what they

No.		CONTENT				
	The table below represents data obtained from an absorption experiment u three separate radioactive sources (background count = 20 counts per minute					
			Count	t rate (per min	ute)	
		Type of radiation	Source A	Source B	Source C	
		Air	3125	900	420	
20.4.5		Paper	3130	880	38	
201113		1mm Aluminium	3000	380	20	
		10 mm lead	1900	20	21	
		did paper have c a in the table to				tion from each
20.5	(b) Source C is therefore Alpha, Source B is reduced by aluminium and totally absorbed by 10 mm of lead so is a Beta source, Source A is unaffected by paper and 1mm of alumimium and is reduced by 10 mm of lead so is a gamma source					
20.5	I can state that Activity is the number of nuclear disintegrations per second.					
20.5.1	Explain the term activity of a radioactive source.					
	Activity is the number of decays / disintegrations per second					
20.5.2	State what happens to the Activity of a source with time.					
	Activity decreases with time					
20.5.3	Describe an experiment to find the activity of a radioactive source using the following equipment: Stopwatch, Geiger-Muller Tube, Counter.					
	Radioactive source	Activity	G.M. tube		0 counts Counter	


NB This will not give you the total activity of the source as the GM tube and counter will only count the particles that arrive at the detector, many radioactive particles will not be detected.


Use the GM tube and counter to detect the background radiation (no source).

Then place the radioactive source close to the GM tube and switch on the counter. Note the count in one minute (60 seconds). Record the number of counts on the counter. Find the Activity using A=N/t where A is the activity in Becquerels, N is the count, t is the time in seconds.

No.	CONTENT							
20.6	I can state the units of activity.							
20.6.1	State the units of the Activity of a source.							
	Activity is measured in Becquerels, symbol Bq (but Bq alone wouldn't get you a mark)							
20.7	I can use $A=N/t$ to solve problems involving activity, number of nuclear disintegrations and time.							
	Copy this table and calculate the missing numbers, there is no need to complete the table, just show the working underneath using IESSUU .							
	Activity Number of Time / s Working							
	(a) 12 Bq 720 60 $A = \frac{N}{12} = \frac{720}{12} = 12$ Bg							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
20.7.1	$A = \frac{1}{t} = \frac{1000}{180} = 25 \text{ Bq}$ (c) 1000 1×10 ⁵ Bq 100 N = A × t = 1000 × 10 = 1 × 10 ⁵ Bq							
	(d) 12 500 6.3 × 10 ⁶ Bq 500 $N = A × t = 12500 × 500$							
	$= 6.3 \times 10^6 \text{ Bq}$							
	(e) 40 000 3.0 x 10 ⁷ 750 s $t = \frac{N}{A} = \frac{3.0 \times 10^{7}}{40000} = 750 $ s							
	(f) 2.5×10^6 5.0×10^8 200 s $t = \frac{N}{A} = \frac{5.0 \times 10^8}{2.5 \times 10^6} = 200 \text{ s}$							
	Move to later in the question group.							
20.7.2	In a laboratory, the background activity is measured as 1.5 Bq. A Geiger-Muller tube is used to measure the activity of a source in the laboratory. In three							
	minutes, 1440 counts are recorded. Calculate the activity of the source.							
	$A = \frac{N}{t} = \frac{1440}{3 \times 60} = \frac{1440}{180} = 8 \text{ Bq}$							
	$t 3 \times 60 180$ Asource = 8 - 1.5 (due to Background) = 6.5 Bq							
20.7.3	Calculate the activity of a source that has 210 decays in a minute.							
	$A = \frac{N}{t} = \frac{210}{60} = 3.5 \text{ Bq}$							
20.7.4	A source has an activity of 2.0 kBq. Calculate the number of counts recorded							
	from the source by a Geiger-Muller tube (and counter) in 30 seconds. 2.0 kBq = 2.0 ×10³ Bq							
	$A = \frac{N}{t}$ $2.0 \times 10^3 = \frac{N}{30}$							
	$2.0 \times 10^{-} = \frac{1}{30}$							

No.	C	ONTENT					
	$N = 2.0 \times 10$	$0^3 \times 30 = 6.0 \times 10^4$					
20.7.5	Calculate the time it takes a source v radioactive decays.	with an activity of 1.8 MBq to have 8.1×1					
	1.8 MBq = 1.8×10^{6} Bq						
	1.8 MBQ = 1.8 × 10° BQ $A = \frac{N}{t}$ 1.8 × 10 ⁶ = $\frac{8.1 \times 10^8}{t}$ $t = \frac{8.1 \times 10^8}{1.8 \times 10^6} = 506 s$						
		×10 ⁶ ays from a radioactive source is recorded.					
	The background count is then taken a						
	Time / minutes	Corrected Number of Decays					
	0	0					
	1	1800					
20.7.6	2	3600					
	3	5400					
	4	7200					
	5	9000					
	to calculate the activity of the so	s, and use the gradient of the straight li urce.					
100							
90							
<u>× 80</u>	00						
05 D	00						
jo 60	00						
ອ ແ 50	00						
\$8000 7000 6000 6000 5000 7000 4000 7000 3000 7000							
00 20							
10		y = 1800x					
10		$\mathbf{R}^2 = 1$					
	0 * 0.0 0.5 1.0 1.5 2.0 2.5 3	.0 3.5 4.0 4.5 5.0 5.5					

No.	CONTENT						
U So So U Fr C Ir P	lear weapons tests carried out by 0.02% Inited States of America. Ioviet Union. Inited Kingdom. Irance. Inina. India. India. Iakistan. Iorth Korea.						
20.9	Knowledge of the dangers of ionising radiation to living cells and of the need to measure exposure to radiation						
20.9.1	State how the equivalent dose a person receives can be reduced.						
	Monitor: Do not go near a source unless totally necessary and limit any exposure						
	Distance: Keep as far away from the source as possible, handle with tongs or remote arms, as this increases the distance to the source.						
	Shield: put layers of shielding between the source and the user, such a gloves and lab coat (for alpha only) and aluminium for beta lead for gamma.						
	Do not choose two answers from the same group, choose one from each section in a question.						
20.9.2	Explain why airline pilots and crews receive higher doses of radiation than the ground crew working in the airport.						
	Gamma radiation is absorbed by the atmosphere. As aircraft pilots are higher in the sky there is less atmosphere to absorb this harmful radiation.						
20.9.3	State three factors that can affect the biological harm of radiation.						
	The biological effect of radiation depends on:						
	 The absorbed dose the type of radiation (alpha, beta, gamma or x-rays) and the type of tissue absorbing the radiation 						
20.9.4	State three ways to reduce the biological harm on a person due to radiation.						
	1.Keep your distance, 2 Limit exposure time, 3 Use shielding.						
20.9.5	Several people have been poisoned by Polonium-210. Describe their symptoms prior to death.						
	Symptoms would depend on the strength of polonium used.						
	They would likely include:						

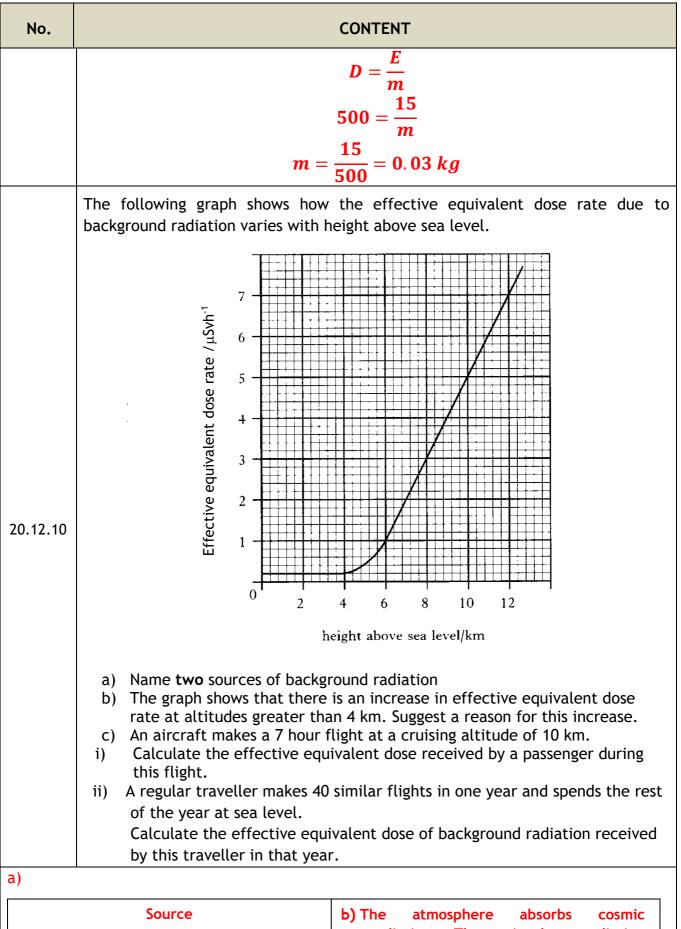
No.	CONTENT				
	 nausea and vomiting anorexia hair loss lowered white blood cell count, or lymphopenia diarrhoea damage to bone marrow 				
	The higher the dose, the faster the effect will be.				
 After these acute symptoms, the patient may appear to record bone marrow damage will continue, resulting in lower white brand platelet counts. Next, various body organs will be affected, including the bone the gastrointestinal system, and the cardiovascular and nervous system (CNS). If the CNS is affected, this is irreversible and leads to death doses, this can lead to confusion, convulsion, and coma within of the poisoning. Finally, the person will either die or recover. 					
20.10	I can use appropriate relationships to solve problems involving absorbed dose and equivalent dose energy, mass and radiation weighting factor. $(H = Dw_R, D = \frac{E}{m})$				
20.10.1	State the difference between and absorbed dose and an equivalent dose.				
	Absorbed dose, D is equal to $D = \frac{E}{m}$ and takes into account the energy of the radiation and the mass of the absorbing tissue. Equivalent Dose takes into account the biological harm done by the radiation and is $H = D w_R$ or $H = \frac{E}{m} \times w_R$				
20 10 2					
20.10.2	State what is indicated by the radiation weighting factor for each radiation.				
	The radiation weighting factor takes account of the biological harm done by each type of radiation.				

No.	CONTENT						
	Copy this table and calculate the missing numbers, there is no need to complete the table, just show the working underneath. Show all the working using IESSUU.						
		Absorbed Dose / Gy	Energy/ J	Mass / kg	working		
	(a)	1.2 x 10⁻⁵	6 x 10 ⁻⁶	0.5	$D = \frac{E}{m}$ $D = \frac{6 \times 10^{-6}}{0.5}$		
	(b)	1.4 x 10 ⁻⁴	3.5 x 10 ⁻⁵	0.25	$D = \frac{E}{m}$ $D = \frac{3.5 \times 10^{-5}}{0.25}$		
20.10.3	(c)	8.8 x 10 ⁻⁵	4.4 x 10 ⁻⁶	0.05	$D = \frac{E}{m}$ 8.8 × 10 ⁻⁵ = $\frac{E}{0.05}$ E = 8.8 × 10 ⁻⁵ × 0.05		
	(d)	6.5 x 10 ⁻⁵	1.7 x 10 ⁻⁵	0.26	$D = \frac{E}{m}$ 6.5 × 10 ⁻⁵ = $\frac{E}{0.26}$ E = 6.5 × 10 ⁻⁵ × 0.26		
	(e)	1.1 x 10 ⁻⁵	3.3 x 10 ⁻⁶	0.30	$D = \frac{E}{m}$ 1.1 × 10 ⁻⁵ = $\frac{3.3 \times 10^{-6}}{m}$ $m = \frac{3.3 \times 10^{-6}}{1.1 \times 10^{-5}}$		
	(f)	1.2 x 10 ⁻⁵	1.8 x 10 ⁻⁶	0.15	$D = \frac{E}{m}$ 1.2 × 10 ⁻⁵ = $\frac{1.8 \times 10^{-6}}{m}$ $m = \frac{1.8 \times 10^{-6}}{1.2 \times 10^{-5}}$		
20.10.4	Calculate the equivalent dose absorbed by a person exposed to 5 mGy of radiation with a radiation weighting factor of 6.						
	$H = Dw_R$ $H = 5 \times 10^{-3} \times 6$ H = 0.03 Sv						
	$\begin{array}{c} OR \\ H = Dw_R \end{array}$						

CONTENT				
$H = 5 \times 6 = 30 \ mSv$ Here I've kept the dose in mGy which will give an answer in mSv. BEWARE if you use this that you check your sig fig and numbers.				
The absorbed dose to a mass of skin is 10 μ Gy. Calculate the mass of skin exposed if the energy of the radiation is 4.2 μ J.				
$D=rac{E}{m}$	$D=rac{E}{m}$			
$10\mu = \frac{4.2\mu}{m}$	$0 \times 10^{-6} = \frac{4.2 \times 10^{-6}}{m}$			
$m = \frac{4.2\mu}{10\mu} = 0.42 \ kg$ m	$=\frac{4.2\times10^{-6}}{10\times10^{-6}}=0.42~kg$			
radiation weighting factor of 20, calculate the abs				
)			
Visitors to a nuclear reprocessing plant are informed that they have absorbed an equivalent dose of 2.0 μ Sv from a measured absorbed dose of 2.0 μ Gy.				
 (i) Calculate the radiation weighting factor of the radiation they were exposed to. (ii) Using tables in the notes identify possible types of radiation. 				
(i) $H = Dw_R$	Radiation weighting factors			
$2\times 10^{-6} = 2\times 10^{-6} \times w_R$	Type of radiation Radiation alpha 20			
$\frac{2 \times 10^{-6}}{2 \times 10^{-6}} = w_R = 1$	beta1fast neutrons10gamma1slow neutrons3			
This could be due to beta, gamma or X-rays				
In the course of his work an industrial worker receives an equivalent dose of 200 μ Sv. Determine the absorbed dose if he is exposed to alpha particles, with a radiation weighting factor of 20.				
$H = Dw_R$				
$\frac{200 \times 10^{-6}}{20} = D = 1.0 \times 10^{-5} Gy$				
OR				
$H = Dw_R$ $200 \mu = D \times 20$				
	$H = 5 \times 6 = 30 \text{ mSr}$ Here I've kept the dose in mGy which will give a you use this that you check your sig fig and num The absorbed dose to a mass of skin is 10 µGy. Cal exposed if the energy of the radiation is 4.2 µJ. $D = \frac{E}{m}$ $10\mu = \frac{4.2\mu}{m}$ 1 $m = \frac{4.2\mu}{10\mu} = 0.42 \text{ kg}$ m An equivalent dose of 4µSv is received by a patient radiation weighting factor of 20, calculate the abso $H = Dw_R$ $4 \times 10^{-6} = D \times 20$ $\frac{4 \times 10^{-6}}{20} = D = 2.0 \times 1$ Visitors to a nuclear reprocessing plant are informed an equivalent dose of 2.0 µSv from a measured at (i) Calculate the radiation weighting factor exposed to. (ii) Using tables in the notes identify poss (i) $H = Dw_R$ $\frac{2 \times 10^{-6}}{2 \times 10^{-6}} = w_R = 1$ This could be due to beta, gamma or X-rays In the course of his work an industrial worker 200 µSv. Determine the absorbed dose if he with a radiation weighting factor of 20. $H = Dw_R$ $200 \times 10^{-6} = D \times 20$ $\frac{200 \times 10^{-6}}{20} = D = 1.0 \times 20$			

No.	CONTENT				
	$\frac{200\mu}{20} = D = 10 \ \mu Gy$				
20.10.9	Calculate the absorbed dose of a 400 g hand that absorbs 7 μ J of alpha particles.				
	m=400 g, this must be converted to kg = 0.4 kg. NB The fact that they are alpha particles doesn't affect the absorbed dose! $D = \frac{E}{E}$				
	$D = \frac{E}{m}$ $D = \frac{7 \times 10^{-6}}{0.4}$ $D = \frac{1.0 \times 10^{-5} \text{ Gy}}{0.4}$				
20.10.10	$D = 1.8 \times 10^{-5} Gy = 18 \ \mu Gy$ A tumour of mass 150 g is exposed to gamma rays. The absorbed dose from this exposure is 5.1 x 10 ⁻⁵ \u03c4 Gy. What is the energy of the gamma rays absorbed by the tumour?				
$D = \frac{E}{m}$ 5.1 × 10 ⁻⁵ = $\frac{E}{0.150}$					
20.10.11	$E = 5.1 \times 10^{-5} \times 0.150 = 7.6 \times 10^{-6} J = 7.6 \mu J$ A sample of tissue is exposed to 15 µGy of alpha radiation and 20 µGy of gamma radiation. Calculate the total equivalent dose received by the tissue is				
	Work out the two doses and add them as scalar quantities				
	$H = Dw_R$ $H = 15\mu \times 20 = 300\mu Sv$ $H = 20\mu \times 1 = 20\mu Sv$				
	$H_{Total} = H \alpha + H \gamma = 300 + 20 = 320 \ \mu S v$ or 0.32 mSv				
	A worker spends some time in an area where she is exposed to the following radiations:				
20.10.12	thermal neutrons = 8 mGy radiation weighting factor = 3				
	fast neutrons = 40 μ Gy radiation weighting factor = 10				
	(a) Calculate the equivalent dose for each type of neutron.				
	(b) Calculate the total equivalent dose for the exposure.				
	Work out the two doses individually and add them as they are scalar quantities.				
Be careful you cannot just add milli Sieverts and micro Sieverts so might want to put them all into scientific notation if you cannot c between the two.					
	a)+ b)				

No.	CONTENT				
	$H = Dw_R$ $H = Dw_R$ $H = 8m \times 3 = 24 \ mSv$ $H = 40\mu \times 10 = 400\mu Sv = 0.4 \ mSv$ $H = 24.4 \ mSv$				
	$H = Dw_R \qquad H = Dw_R H = 8 \times 10^{-3} \times 3 = 24 \times 10^{-3} Sv \qquad H = 40 \times 10^{-6} \times 10 = 400 \times 10^{-6} Sv H_{total} = 24 \times 10^{-3} + 400 \times 10^{-6} = 24.4 \times 10^{-3} Sv$				
20.10.13	An unknown radioactive material has an absorbed dose of 500 μGy and gives a dose equivalent of 1.0 mSv. Calculate the radiation weighting factor of the material.				
	When the prefixes are different it is best to convert everything to base units $H = Dw_R$ $1.0 \times 10^{-3} = 500 \times 10^{-6} \times w_R$				
	$\frac{1.0 \times 10^{-3}}{500 \times 10^{-6}} = w_R = 2$				
20.10.14	A patient receives a chest X-ray with an equivalent dose of 2.0 mSv. If the radiation weighting factor of the X-ray is 1, calculate the absorbed dose of the patient.				
	$H = Dw_R$ 2. 0 × 10 ⁻³ = D × 1				
	$\frac{2.0 \times 10^{-3}}{1} = D = 2.0 \times 10^{-3} Gy = 2.0 mGy$				
20.10.15	A lady has a dental X-ray which produces an absorbed dose of 0.3 mGy. Calculate the equivalent dose of this X-ray.				
	$H = Dw_R$ $H = 0.3 \times 10^{-3} \times 1$				
	$H = 0.3 \times 10^{-3} Sv = 0.3 mSv$				
20.10.16	A nuclear worker is exposed to a radioactive material producing an absorbed dose of 10 mGy. She finds that the material emits particles with a radiation weighting factor of 3. Calculate the equivalent dose for this exposure.				
	$H = Dw_R$ $H = 10 \times 10^{-3} \times 3$				
	$H = 30 \times 10^{-3} Sv = 30 \ mSv$				
20.10.17	A physics teacher uses a gamma source in an experimental demonstration on absorption. The teacher receives an absorbed equivalent dose of 0.5 μ Sv. Calculate her absorbed dose if the radiation weighting factor for gamma radiation is 1.				


No.	CONTENT				
	$H = Dw_R$				
	$0.5 \times 10^{-6} = D \times 1$				
	$\frac{0.5 \times 10^{-6}}{1} = D = 0.5 \times 10^{-6} Gy = 0.5 \ \mu Gy$				
20.10.18	(a) Alpha particles produce an equivalent dose of 50 mSv from an absorbed dose of 2.5 mGy. Calculate the radiation weighting factor of the alpha particles.				
	(b) Explain why exposure to alpha radiation increases the risk of cancer more than X-rays or gamma rays.				
	$H = Dw_R$				
	$50 \times 10^{-3} = 2.5 \times 10^{-3} \times w_R$				
	$\frac{50 \times 10^{-3}}{2.5 \times 10^{-3}} = w_R = 20$				
	Alpha particles are more ionising so causes more biological harm to cells that X rays or gamma rays				
20.10.19	The unit for absorbed dose is the gray, Gy. Explain this term and give an equivalent unit for absorbed dose.				
	Absorbed dose is the energy from the radiation per kilogram of absorbing tissue, so its alternative units for Gy must be Jkg ⁻¹				
20.11	I can state that the unit for absorbed dose, the unit for equivalent dose is the Sievert (Sv) and the radiation weighting factor has no unit				
	State the symbol, unit, and unit symbol for the following				
20.11.1	 a) Absorbed dose D Grays, Gy b) Equivalent dose H Sieverts Sv c) Radiation weighting factor w_R no units 				
20.11.2	Write out the relationships for the dosimetry formula and for each one write them in words and symbols. Use the relationships sheet to help you				
	$H = Dw_R$				
	Equivalent dose = Absorbed Dose x radiation weighting factor.				
	$D=rac{E}{m}$				
	Absorbed Dose = Energy of radiation divided by mass of the absorbing tissue.				
	Combining these gives				
	$H=\frac{E}{m}w_R$				
20.12	I can use (H dot) \dot{H} = H/t to solve problems involving equivalent dose and time to calculate an equivalent dose rate.				

No.	CONTENT					
	A sample of tissue receives an equivalent dose rate of 0.40 mSv h ⁻¹ from a					
20.12.1	source of alpha radiation. Calculate the equivalent dose received by the sample in 30 minutes.					
	NB Beware there is a conflict of units here! The equivalent dose is given in mSvh ⁻¹ , the time in minutes so this needs to be converted to hours					
	t = 30mins = 0.5 h					
	$\dot{H} = \frac{H}{t}$					
	$\dot{H} = \frac{H}{t}$ $0.40 = \frac{H}{0.5}$					
	0.500000000000000000000000000000000000					
20.12.2	A worker in a nuclear power plant is receives an annual equivalent dose of 6.10 mSv. Calculate the worker's equivalent dose rate, in μ Svh ⁻¹					
	For this question we need to find hours in a year. We'll just take an ordinary year!					
	365 day= 365 × 24 = 8760 hour					
	Put the milli sieverts into sieverts to make changing to microsieverts easier.					
	$\dot{H} = \frac{H}{t}$					
	$\dot{H} = \frac{H}{t}$ $\dot{H} = \frac{6.10 \times 10^{-3}}{8760} = 0.70 \ \mu Svh^{-1}$					
20.12.3	Radiation workers can receive an average equivalent dose rate of 2.2μ Svh ⁻¹ to still be within limits for radiation workers. Calculate the annual equivalent dose a radiation worker can receive.					
	$\dot{H} = \frac{H}{t}$					
	$\dot{H} = \frac{1}{t}$ 2.2 × 10 ⁻⁶ = $\frac{H}{8760}$					
	$2.2 \times 10^{-6} \times 8760 = H = 19 mSv$					
	SQA N5 2014					
	An airport worker passes suitcases through an X-ray machine. (a) The worker has a mass of 80.0 kg and on a particular day absorbs 7.2 mJ of					
20.12.4	energy from the X-ray machine. (i) Calculate the absorbed dose received by the worker.					
	(ii) Calculate the equivalent dose received by the worker.					
	(iii) If this equivalent dose rate is received over a period of 10 hours, calculate the equivalent dose rate received by the worker.					

No.		CONTENT				
	Answer Max Mark Additional Guidance					
(i)	$D = \frac{E}{m}$	(1)	3			
	$=\frac{7\cdot2\times10^{-3}}{80\cdot0}$	(1)				
	$=9.0 \times 10^{-5}$ Gy	(1)				
(ii)	$H = Dw_R$	(1)	3	Or answer consistent with 8(a)(i)		
	$=9.0\times10^{-5}\times1$	(1)		If wrong radiation weighting factor selected then (1) MAX for correct equation.		
	$=9.0 \times 10^{-5}$ SV	(1)				
	When an atom gains / loses gains or loses electrons.	/	1	Ignore additional information.		
		<i>.</i> <i>H</i> =	$\frac{H}{t}$			
		H =	× 10 ⁻⁵ 10			
		$\dot{H}=9.0\mu$	uSvh ⁻¹			
20.12.	 As a part of his job, an airport security guard has to expose her hand to X-rays (w_R = 1) as she removes blockages from a baggage scanner. On average, each time she does this, the absorbed dose of her hand is 0.03 µGy. a) Calculate the equivalent dose of her hand each time she removes a blockage. 20.12.5 b) The safety rules in the airport state that the maximum equivalent dose for his hand in one hour is 0.6 µSv. Determine how many times can the 					
	 airport security guard safely put her hand in the scanner in an hour. c) If the security guard works for an 8 hour shift over a 24 hour period and puts her hand through the scanner 25 times during one shift, calculate the security guard's equivalent dose rate per day. 					
	a) $H = Dw_R$					
	$H = 0.03 \times 1 = 0.03 \ \mu Sv$					
	b) If we take the equivalent dose we are allowed and divide that by the equivalent dose for one blockage clearance we can find the total number of blockages she can perform in this time and be within the limits					

No.	CONTENT				
	$n = \frac{H}{H_1} = \frac{0.6}{0.03} = 20$				
	c) So here the length of a shift isn't important as it is over a 24 hour period. It is a red herring. Yes the worker gets a higher dose during this time but for the other 16 hours she gets very little so we average it out.				
	So her equivalent dose is $H = H_1 \times n =$	$= 0.03 \times 25 = 0.75 \ \mu S v$			
		$\dot{H} = \frac{H}{t}$			
	H =	$=\frac{0.75\times10^{-6}}{24}$			
	$\dot{H}=0.031$	$\mu Svh^{-1} = 31 nSvh^{-1}$			
20.12.6	It is found that a radiation worker has received an equivalent dose of 500 μ Sv in the course of a 25-hour working week. Calculate the equivalent dose rate in μ Sv h ⁻¹ . I think this question is ambiguous and wouldn't be in an exam paper so I will adapt it for the second version				
For the v	vorking week $\dot{H} = \frac{H}{t}$				
	$\dot{H}=\frac{500\times10^{-6}}{5\times24}$	For the hours worked $\dot{H} = \frac{H}{t}$			
For the v	$\dot{H} = 4.2 \ \mu Svh^{-1}$	$\dot{H} = \frac{500 \times 10^{-6}}{25}$			
	$\dot{H} = \frac{H}{t}$ $\dot{H} = \frac{500 \times 10^{-6}}{7 \times 24}$	$\dot{H} = 20 \mu Svh^{-1}$ during the working week but we take it over the whole week			
	$\dot{H} = 3 \ \mu S v h^{-1}$				
	The cosmic ray detector on board a of 15 μ Svh ⁻¹ .	n aircraft indicates an equivalent dose rate			
20.12.7	 (i) Calculate the equivalent dose to those on board during a 4-hour fligh (ii) Calculate the number of these flights would a crew member have to make in a year to receive the maximum permissible equivalent dose 5.0 mSv in a year? 				

No.	CONTENT					
	$\dot{H} = \frac{H}{t}$ $15 \ \mu = \frac{H}{4}$					
			$15 \mu = \frac{1}{4}$			
		$15 \ \mu \times 4 = H$	= 60 µSv or 0.06 n	าริข		
	No. of flights per year is the total equivalent dose ÷equivalent dose for 1 flight					
		$n = \frac{H}{H}$	$\frac{1}{1} = \frac{5.0}{0.06} = 83$			
	A worker receives	-				
	-	radiation	150 μGy			
		nermal slow neutro list neutrons	90 μGy.			
20.12.8			νο μογ.			
	a) What	is the equivalent	dose for each radia	ition?		
		the total equivale				
			ved in 6 hours, calc	ulate the equivalent dose		
		<u>n μSv h⁻¹.</u>	e radiation weighti	ng factor for each		
	radiation. This will					
	Radiation weighting					
	Type of radiation	Radiation weighting factor	slow neutrons	150 μGy w _R = 1 240 μGy w _R = 3		
	alpha	20	Fast neutrons	90 μGy. w _R = 10		
	beta	1				
	fast neutrons	10		$H = Dw_R$		
	gamma	1	H=150	$\mu \times 1 = 150 \mu Sv$		
	slow neutrons	3	H=240	$\mu \times 3 = 720 \ \mu Sv$		
	X-rays	1				
	b) Total equivalent	t dose = sum of ea	•	$\mu \times 10 = 900 \ \mu Sv$		
			$\mu Sv + 900 \ \mu Sv =$	1.8 <i>mSv</i>		
	c)		Н			
			$\dot{H} = \frac{H}{t}$			
	$\dot{H}=\frac{1.8\times10^{-3}}{6}$					
	$\dot{H} = 0.3 \ mSvh^{-1}$					
	SQA Exam Question	าร				
20.12.9	i) A patient's thyroid gland is to receive an absorbed does of 500 Gy from a source so that the gland absorbs 15 J of energy. From this information what is the mass of the thyroid gland?					

Cosmic Radiation (sea Level)*

Radon Gas

D)	ine a	tmos	spnere	abs	sords	CO:	smic
	radiatio	on.	There	is	less	radia	tion
	arriving	g at	lover	levels	as	more	has
	been a	bsorl	bed by	the at	mos	phere.	For

No.		CONTENT				
Radioactivity from rocks, soil, buildings		gamma rays with an energy of 1 MeV half will be absorbed every 90 metres				
Radioactivity in human body from organic matter		Reading from the graph at an altitude on 10 km the effective equivalent dose rate is 5μ Svh ⁻¹ so for a 7 hour flight				
	Medical radiation					
Hour	H = 5 × 7 = 35 μSv c) Total flight equivalent dose = No of flights × equivalent dose per flight Total flight equivalent dose = 40 × 35 = 1400 μSv Hours in 1 year = 365 × 24 = 8760 hours Flying hours = 40 × 7 = 280 hours Hours in the year at ground level = 8760 - 280 = 8480					
		$= \frac{H}{t} = \frac{H}{8480}$ 8480 = 1696 µSv				
	Il background radiation = ground leve Il annual background equivalent dose					
<u>Tota</u>	<u>I annual background equivalent dose</u>	<u>= 3 mSv</u>				
Hou	You could also have done this as r at ground level equivalent dose rate e rate at 10 km	e at ground level + Hour at 10 km × equivalent				
(280) ×5) + (8480 ×0.2) = 3096 μSv					
<u>Tota</u>	<u>I annual background equivalent dose</u>	<u>= 3 mSv</u>				
	The radiology department in a hospital uses radioactive iodine to examine the functioning of the thyroid gland in a patient. The thyroid gland of the patient receives an absorbed dose of 750 μ Gy of radiation from the radioactive iodine.					
20.12.11	(ii) The average equivalent radioactive iodine is pre	bsorbed if the gland has a mass of 0.04 kg. dose rate for the gland is 12.5 μ Sv h ⁻¹ . The sent in the gland of the patient for 120 hours. adiation weighting factor of the radiation.				
		$D = \frac{E}{m}$ $750\mu = \frac{E}{0.04}$				
		$\times 0.04 = E = 30 \ \mu J$				

No.	CONTENT
	ii) We need to find the Equivalent dose as the value is given as an equivalent dose rate. So this is a two calculation question
	$\dot{H} = \frac{H}{t}$ $12.5\mu = \frac{H}{120}$
	$12.5\mu = \frac{120}{120}$
	$12.5\mu imes 120 = H = 1500 \ \mu Sv$
	$H = Dw_R$
	$1500 \ \mu = 750 \mu \times w_R$
	$\frac{1500\mu}{750\mu} = w_R = 2$
	Smoke detectors are important in giving early warning of fire starting in the home.
	a) The simplified layout of one type of smoke detector is illustrated below.
	radioactive source radiation buzzer source radiation current detector smoke inlet
20.12.12	The following is an extract from the manufacturer's data sheet. "The detector uses a low energy source of ionising radiation, 30 kBq Americium 241, which causes ionisation of the air molecules and hence a small current between the electrodes. When smoke particles enter the space between the electrodes they impede the flow of ions and the current is reduced. When the current falls below a certain value the buzzer sounds."
	i) The symbol for the radioactive source used is ${}^{241}_{95}Am$.
	 What information is given by the numbers 95 and 241? 95 is the atomic number/ no. of protons in the atom 241 is the mass number/ no. of protons + neutrons in the atom ii) What is meant by "30 kBq"? 30 kBq means 30 000 disintegrations per second. iii) Explain what is meant by ionising radiation. Ionising radiation passes through matter and can dislodge outer electrons from atoms causing them to become ions.

No.	CONT	ENT			
	iv) The equation for decay of this source is				
	$^{241}_{95}Am \rightarrow ^{237}_{93}Np + radiation$ Identify the type of radiation emitted in this decay and explain why this				
	particular type of radiation is used in the LHS	smoke detector. RHS			
	Mass number = 241 Atomic Number = 95	241- 237= 4 95-93=2			
	So the radiation must be alpha as it has 4 nucleons and 2 protons, which is a helium nucleus or alpha particle. This radiation is used as it is highly ionising travels only a short distance in air and is easily absorbed by the plastic casing.				
	The half-life of Americium 241 is 458 years. Discuss the advantage of using this source compared to one with a half-life of 5 years.				
	If it had a long half-life then it wouldn't	have to be replaced very often.			
20.13	I can state the units of H dot.				
20.13.1	State the quantity, unit, and unit symbol for the term \dot{H}				
	<i>H</i> is equivalent dose rate and measured	in units of Svh ⁻¹ or Svy ⁻¹			
20.14	I can compare equivalent dose due to a v	ariety of natural and artificial sources.			
	A pie chart indicating the exposure of the Public to ionizing radiation is given below.				
20.14.1	nuclear medicine cosmic % internal 11% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrestrial 8% consumer products 3% terrays 11% terrestrial 8% terrestrial 8% consumer products 3% terrestrial 8% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrestrial 10% terrest				

No.	CONTENT				
	(c) Calculate the percentage exposure due to artificial sources.				
	(d) State the percentage exposure from naturally occurring sources.				
	As an aside				
	Other sources <1% includes				
	Occupational - 0.3%				
	• Fallout - <0.3%				
	• Nuclear fuel cycle - 0.1%				
	Miscellaneous - 0.1%				
		oublic exposure is due to radon gas.			
	b) Natural Sources	Artificial sources			
	Radon Gas	Medical X-rays			
	Terrestrial	Consumer Products			
	Cosmic	Medical			
	Internal (Food)				
	c) The artificial source	s are medical (4%) consumer products (3%) and			
	medical (11%) which				
		are radon (55%) cosmic (8%) and internal (11%) and			
	terrestrial (8%) which				
	there are other sour	e numbers are rounded to 1 sig fig which is why ces listed below			
20.14.2	State if you are more likely to receive a more uniform dose of radiation from naturally occurring or man-made sources of radiation. You must justify your				
	answer.Uniform dose from naturally occurring radiation as spread across rocks and food etc. Fabricated sources are designed to be intense, high doses over a short time, eg radiotheraphy etc.				
	SQA N5 2014				
	A sample of tissue is irradiated using a radioactive source.				
	A student makes the following statements about the sample.				
20.14.3	I The equivalent dose received by the sample is reduced by shielding the				
	II The equivalent dose rece the source to the sample is	vived by the sample is increased as the distance from increased.			
	III The equivalent dose rea time of exposure of the sa	ceived by the sample is increased by increasing the mple to the radiation.			
	SQA N5 2015				
	A sample of tissue is irradiated using a radioactive source.				
20.14.4	A student makes the following statements.				
	The equivalent dose received by the tissue is				
	I reduced by shielding the	tissue with a lead screen			

long half-life

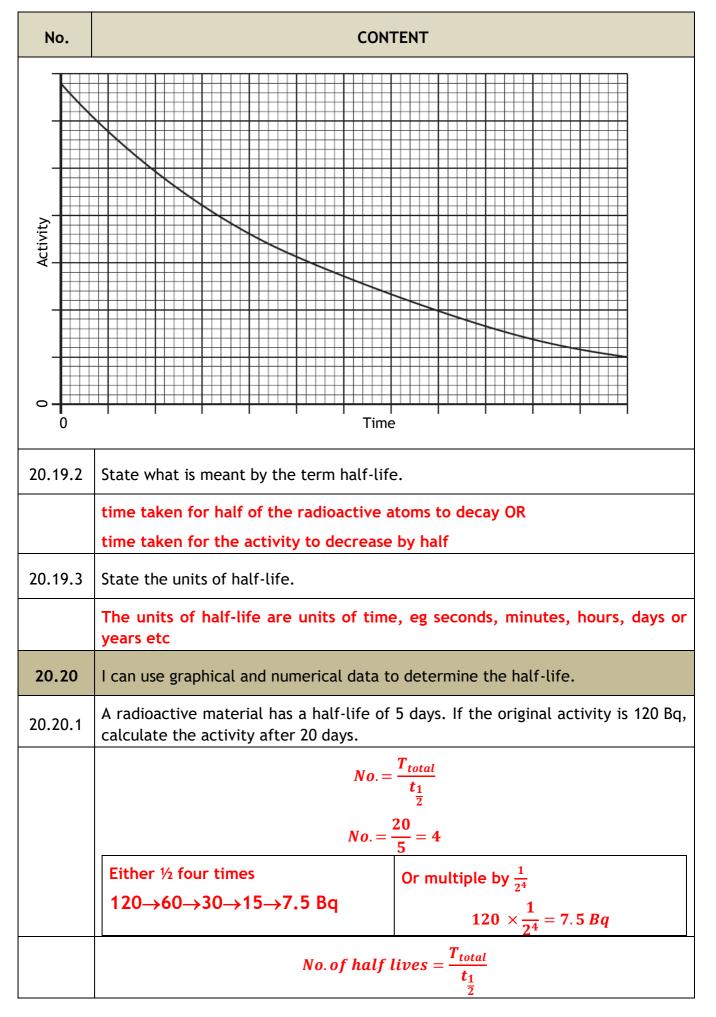
No.	CONTENT					
	II increased as the distance from the source to the tissue is increased					
III increased by increasing the time of exposure of the				e to the radiation.		
	Yes this question really was on 2 years running!					
SQA N5 2015				radioactive		
	A paper mill uses a radioactive system to monitor the thickness of		r paper <u> </u>	ollers D		
	Radiation passing through the paper is detected by the Geiger-Müller tube.					
20.14.5	The count rate is displayed on the counter as counter tub shown. The radioactive source has a half-life that allows the system to continuously.					
	 (a) State what happens to the count rate if the thickness of the paper decreases. 	Radioactiv Source	e Half-life	Radiation emitted		
	(b) The following radioactive	W	600 years	alpha		
	sources are available. State	Х	50 years	beta		
	which radioactive source	Y	4 hours	beta		
	should be used. You must explain your answer.	Z	350 years	gamma		
(a)	Increases	1				
(b) (i)	Choice:	3 F	irst mark can onl	y be awarded if		
	(source) X (1)	с	n explanation is a hoice correct + e orrect (3)			
	Explanation:		hoice correct + e artially correct (2			
	beta (source required) (1)		hoice correct + e			

(1)

incorrect (1)

attempted (0)

Choice correct + no explanation

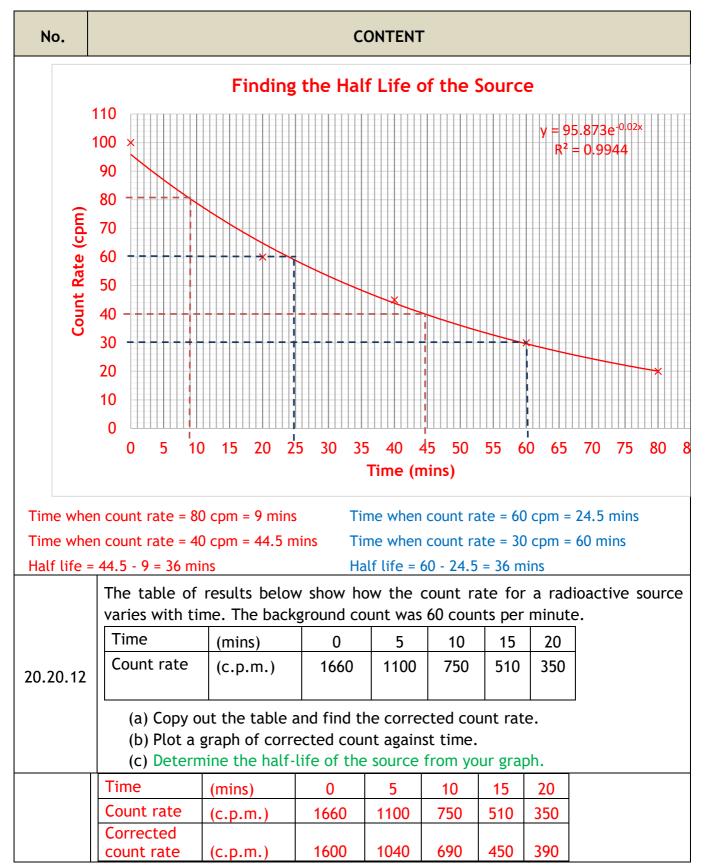

Incorrect or no choice made regardless of explanation (0)

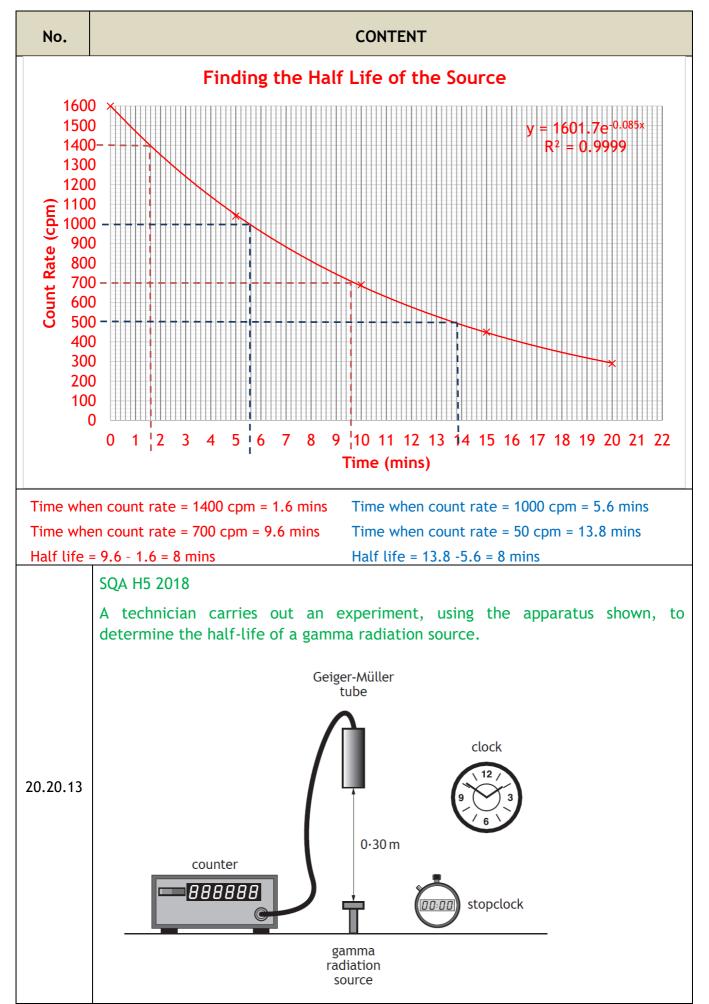
No.		CONTENT				
t t		Time for activity to (decrease by) half DR	1	Having chosen source X, can explain why each of the other three sources should not be used. Having chosen source X, can explain that a beta source should be used but that source Y is not suitable because it has too short a half-life. Do not accept: Time for radiation/radioactivity/ count rate to half		
	'	inie for half the flucter to decay				
20.1	15	I know the average annual bac	kground ra	adiation in the UK.		
20.15	5.1	State the average annual background radiation in the UK. 2.2 mSv				
20.16		I know the average annual effective dose limit for a member of the public in the UK.				
20.16	6.1	State the average annual effective dose limit for a member of the public in the UK. 1mSv				
20.1	17	I know that the average annual effective dose limit for radiation workers.				
20.17	7.1	State the average annual effective dose limit for radiation workers. 20 mSv				
20.1	18	I can give some applications of nuclear radiation.				
20.18.1		State some medical applications of nuclear radiation.				
		 Diagnosis of organ func Treatment for cancer Sterilization of medical PET scanners Improving contrast in X Radiosurgery ore detailed information on the n-power-nuclear-applications/radio 	equipme -rays above fr	om <u>https://world-nuclear.org/information-</u>		

0	i iai gi	
	No.	CONTENT
-		aspx#:~:text=Nuclear%20medicine%20uses%20radiation%20to%20provide%20diagnostic%20i
<u>nfo</u>	rmatio	n,radiation%20to%20weaken%20or%20destroy%20particular%20targeted%20cells. You will
not	need	this much detail to answer an exam question but it gives some idea of things you could
wri	te aboi	ut.
	Nuele	an modicine we disting to provide dispersition information shout the
•		ear medicine uses radiation to provide diagnostic information about the
		ioning of a person's specific organs.
٠	Radio	otherapy can be used to treat some medical conditions, especially cancer,
	using	radiation to weaken or destroy particular targeted cells.
•		ization of medical equipment is an important use of radioisotopes.
		netium injections are used to improve contrast on a spinal x ray.
•		
•	PET s	canners (positron emission tomography) detect the precise position and extent of
	cance	ers.
•	Diagn	ostic radiopharmaceuticals can be used to examine blood flow to the brain,
	funct	ioning of the liver, lungs, heart, or kidneys, and to assess bone growth and to
		ct the effects of surgery and assess changes since treatment.
	- C	
•		sternal radiation procedure is known as gamma knife radiosurgery, and involves
		ing gamma radiation on a precise area of the brain with a cancerous tumour. This
	exter	nal irradiation (sometimes called teletherapy) can be carried out using a gamma
	beam	from a radioactive cobalt-60 source.
•	Interr	nal radionuclide therapy is administered by planting a small radiation source,
		ly a gamma or beta emitter, in the target area to kill cancer/ tumour cells.
•		-range radiotherapy is known as brachytherapy, lodine-131 is commonly used to
	treat	thyroid cancer. It is also used to treat non-malignant thyroid disorders. Iridium-
	192 ir	nplants are used especially in the head and breast.
•	Perm	anent implant seeds are used in brachytherapy for early stage prostate cancer.
•		ytherapy procedures give less overall radiation to the body, are more localized to
		arget tumour, and are cost-effective.
•		ing leukaemia may involve a bone marrow transplant. The defective bone marrow
	will f	irst be killed off with a massive (and otherwise lethal) dose of radiation before
	being	replaced with healthy bone marrow from a donor.
•	Many	therapeutic procedures are palliative, usually to relieve pain.
•		w field is targeted alpha therapy (TAT) or alpha radioimmunotherapy, especially
		e control of dispersed cancers. The short range of very energetic alpha emissions
		sue means that a large fraction of that radiative energy goes into the targeted
	cance	er cells, Clinical trials for leukaemia, cystic glioma, and melanoma are underway.
•	TAT i	s increasingly important for treating pancreatic, ovarian, and melanoma cancers.
•	Neutr	on Capture Enhanced Particle Therapy (NCEPT) involves injecting a patient with a
		on capture agent shortly before irradiation with protons or heavy ions. This
		bach boosts the target dose without increasing the dose to healthy tissue and
		ers a significant dose to secondary lesions outside the primary treatment area. It
	uses	boron-10 or gadolinium-157 which concentrate in malignant brain tumours. The
	patie	nt is then irradiated with thermal neutrons or protons which are strongly absorbed
	· ·	e boron, producing high-energy alpha particles which kill the cancer. This requires

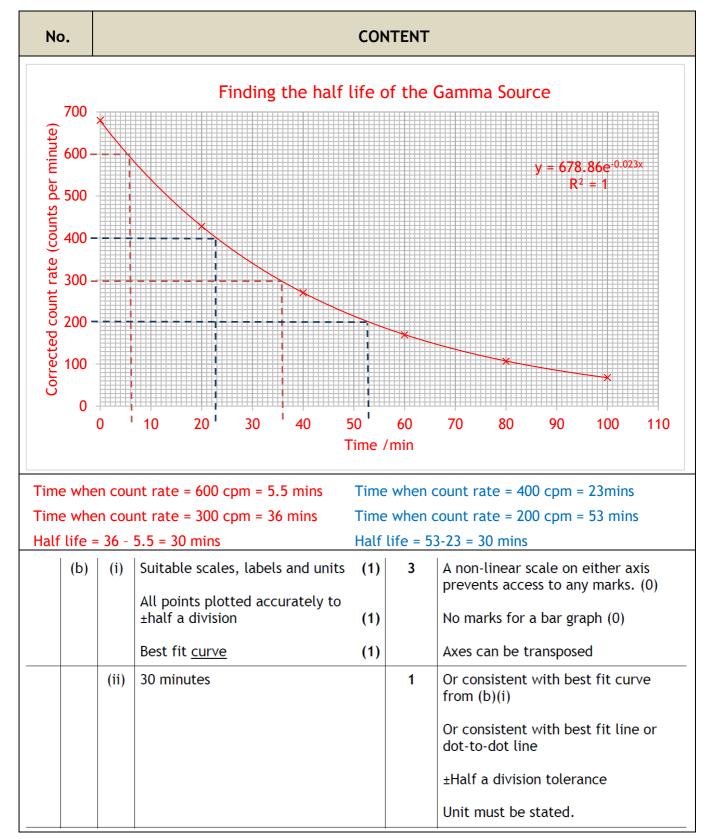
the patient to be brought to a nuclear reactor, rather than the radioisotopes being

No. CONTENT taken to the patient. • The doses per therapeutic procedure are typically 20-60 Gy. Sterilisation by radiation has several benefits. It is safer and cheaper because it can be done after the item is packaged. The sterile shelf-life of the item is then practically indefinite provided the seal is not broken. Apart from syringes, medical products sterilised by radiation include cotton wool, burn dressings, surgical gloves, heart valves, bandages, plastic, and rubber sheets and surgical instruments. • NB A radioisotope used for diagnosis must emit gamma rays of sufficient energy to escape from the body and it must have a half-life short enough for it to decay away soon after imaging is completed. 20.18.2 Describe how electrical energy can be obtained from nuclear radiation. In a nuclear power station nuclear fuel undergoes a controlled chain reaction in the reactor to produce heat energy (nuclear to heat). In a chain reaction a slow moving neutron is bombarded at an unstable nucleus, splitting the nucleus and producing more neutrons. Heat is used to change water into steam in the heat exchanger. (heat in the reactor to heat in the steam) The steam drives the turbine (heat to kinetic energy). This drives the generator to produce electricity - (kinetic to electrical energy). A nuclear reactor produces waste that emits nuclear radiation. State a use of 20.18.3 nuclear radiation. any suitable use e.g. treating cancer/tracers/sterilisation/smoke detectors/measuring thickness of paper. Must be a use of nuclear radiation 20.19 I can define half-life. Sketch a graph showing how the activity of a radioactive source varies with 20.19.1 time.

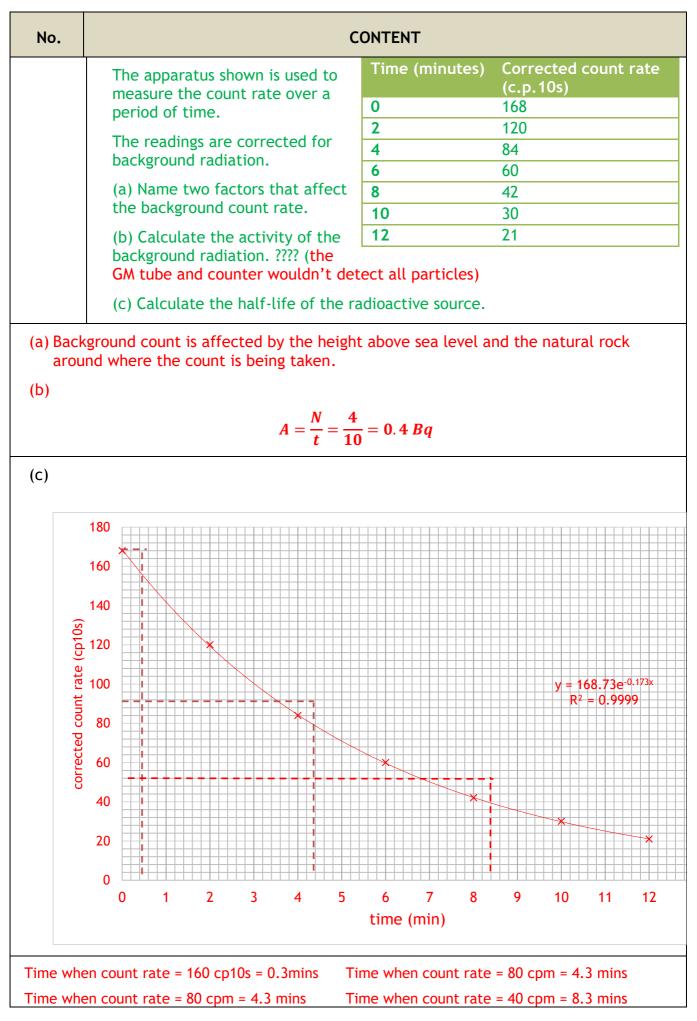


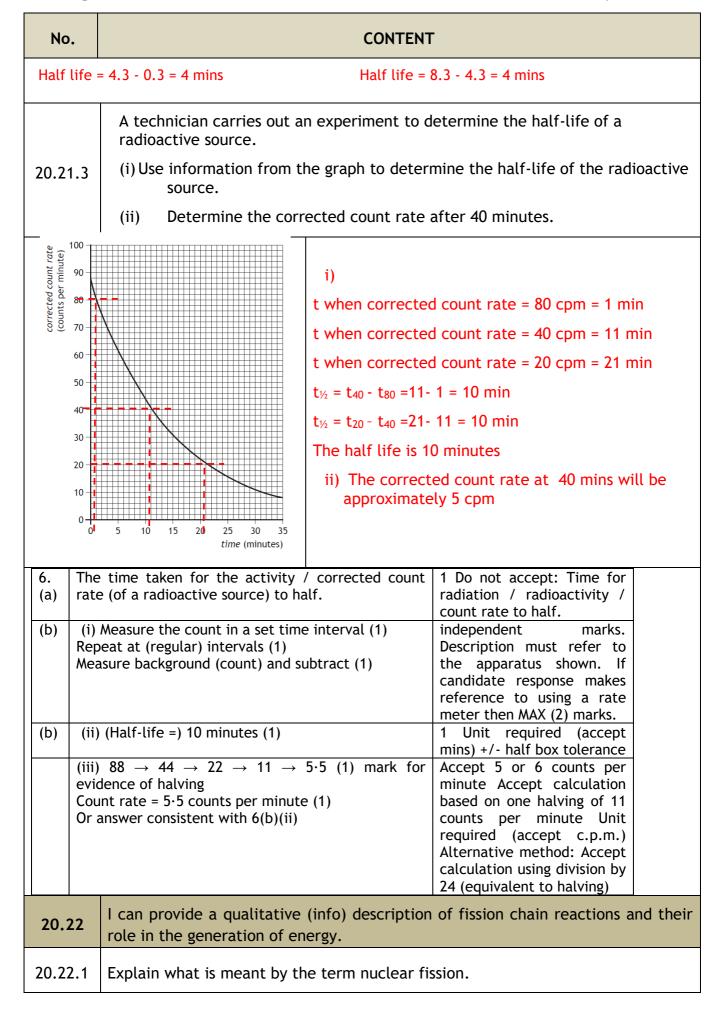

No.	CONTENT			
	$No. = \frac{20}{5} = 4$			
	Keep halving 5 times (remember count the Or arrows, not the numbers) $120\rightarrow60\rightarrow30\rightarrow15\rightarrow7.5$ $A_{final} = \frac{A_o}{2^{no.of t\frac{1}{2}}}$			
	$A_{final} = \frac{120}{2^4} = 7.5 Bq$ Final Activity = 7.5 Bq			
20.20.2	If a radioactive material has a half-life of 600 years. If the original activity was 80 Bq calculate the time it takes for the activity to fall to 10 Bq.			
	Keep halving until you get to the final value			
	80→40→20→10			
	Count the arrows (3)			
	No. of half lives = $\frac{T_{total}}{t_{\frac{1}{2}}}$			
	$3 = \frac{T_{total}}{600}$			
	$3 \times 600 = T_{total} = 1800 \ years$			
20.20.3	A radioactive substance has a half-life of 4 hours. Calculate the fraction of the original activity left after one day.			
	1 day = 24 hours (all times must be in the same units)			
	No. of half lives $= \frac{T_{total}}{t_{\frac{1}{2}}}$			
	No. of half lives $=\frac{24}{4}=6$			
	Fraction remaining $=\frac{1}{2^6}=\frac{1}{64}$			
20.20.4	The activity of a source starts at 100 MBq. After 20 days it has fallen to 6.25 MBq. Calculate the half-life of the source.			
	Keep halving until you get to the final value			
	100M→50→25→12.5→6.25M			
	Count the arrows (4)			

No.	CONTENT		
NO.			
	No. of half lives = $\frac{T_{total}}{t_{\frac{1}{2}}}$		
	2		
	$4 = \frac{20}{t_{\frac{1}{2}}}$		
	20		
	$t_{\frac{1}{2}} = \frac{20}{4} = 5 \ days$		
20.20.5	A radioactive source has an activity of 3072Bq. After 64 days its activity is measured again, and is found to be 48Bq. Calculate its half-life.		
	Keep halving until you get to the final value		
	$3072 \rightarrow 1536 \rightarrow 768 \rightarrow 384 \rightarrow 192 \rightarrow 96 \rightarrow 48$		
	Count the arrows (6)		
	No. of half lives = $\frac{T_{total}}{t_{\frac{1}{2}}}$		
	$6 = \frac{64}{t_{\frac{1}{2}}}$		
	$t_{\frac{1}{2}} = \frac{64}{6} = 10.7 \ days \ or \ 256 \ hours \cong 11 \ days \ or \ 260 \ hours$		
20.20.6	Calculate the half-life of a radioactive source if the activity falls from 4000 kBq to 125 kBq in 40 days.		
	keep halving until you get to the final value		
	3072→1536→768→384→192→96→48		
	Count the arrows (6)		
	No. of half lives $= \frac{T_{total}}{t_{\frac{1}{2}}}$		
	$6 = \frac{64}{t_{\frac{1}{2}}}$		
	$t_{\frac{1}{2}} = \frac{64}{6} = 10.7 \ days \ or \ 256 \ hours \cong 11 \ days \ or \ 260 \ hours$		
20.20.7	The half-life of Cobalt-60 is 5 years. If the source, 25 years ago, had an activity of 500kBq, calculate the new activity.		
	No. of half lives $= \frac{T_{total}}{\frac{t_1}{2}}$		
	$No. = \frac{25}{5} = 5$		


No.	CONTENT
	Keep halving 5 times (remember count the Or
	arrows, not the numbers) $500 \rightarrow 250 \rightarrow 125 \rightarrow 62.5 \rightarrow 31.25 \rightarrow 15.625$ $A_{final} = \frac{A_o}{2^{no.of t_{\frac{1}{2}}}}$
	$A_{final} = \frac{500}{2^5} = 15.625 \ kBq$
	Final Activity = 16 kBq
20.20.8	A radioactive material has a half-life of 5 days. If the original activity is 120 Bq, calculate the activity after 20 days. Repeat
	No. of half lives $= \frac{T_{total}}{t_{\frac{1}{2}}}$
	$No.=\frac{20}{5}=4$
	Keep halving 5 times (remember count the Or arrows, not the numbers) A_{a}
	$A_{final} = \frac{A_o}{2^{no.of t\frac{1}{2}}}$
	$A_{final} = \frac{120}{2^4} = 7.5 Bq$
	Final Activity = 7.5 Bq
20.20.9 Repeat	If a radioactive material has a half-life of 600 years. If the original activity was 80 Bq calculate the time it takes for the activity to fall to 10 Bq.
	Keep halving until you get to the final value
	80→40→20→10
	Count the arrows (3)
	No. of half lives $=$ $\frac{T_{total}}{\frac{t_1}{2}}$
	$3 = \frac{T_{total}}{600}$
	$3 \times 600 = T_{total} = 1800 \ years$
20.20.10	A radioactive substance has a half-life of 4 hours. Calculate the fraction of the
Repeat	original activity left after one day. 1 day = 24 hours (all times must be in the same units)

No.	CONTENT				
	No. of half lives = $\frac{T_{total}}{\frac{t_1}{2}}$				
	No. of half lives $=$ $\frac{24}{4} = 6$				
	Fraction remaining $=\frac{1}{2^6}=\frac{1}{64}$				
	The data above was obtained from an experiment to determine the half-life of a radioactive source:				
	Time (mins) 0 20 40 60 80				
20.20.11	Count rate (c.p.m.) 100 60 45 30 20				
20.20.11	Is this the corrected count rate?				
	(a) Describe how you could carry out this experiment.				
	(b) Determine the half-life of the radioactive source.				
	timer 0000				
	1. Use the Geiger-Muller tube and scaler counter to measure the background count rate.				
	2. Record this value.				
	 Set up the apparatus shown in the diagram. Measure and record values of count rate and time interval for a suitable time period. 				
	5. Correct all your measurements for background by taking the background count off all other measured count rates6. Plot a graph of COUNT RATE or ACTIVITY against TIME.				
	7. Find the half-life from the graph				

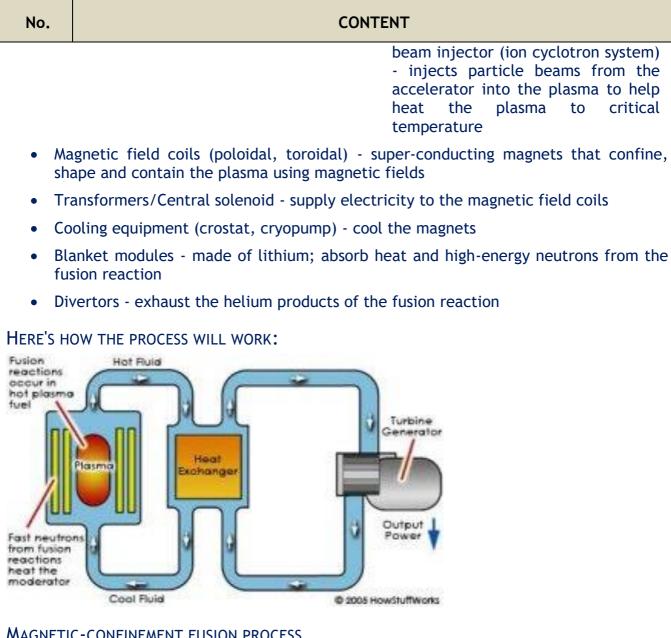



No.	CONTENT					
	(a) Before carrying out the experiment the technician measures the background count rate.					
	(i) E	xplain why this I	measurement is	made.		
	(ii) S	State a source of	f background rac	liation.		
	(b) The technici	an's results are	shown in	the table.	
			Time	Correct	ted count rate	
			(minutes)	(count	s per minute)	
		_	0		680	_
		_	20		428	_
		_	40		270	_
			60		170	_
			80		107	_
	100 68					
	(source. d) The technicia Suggest a cha	aph of these resu graph to deter an repeats the ex ange the technic	mine the operiment ian must	: with an alpha ra make to the exp	adiation source. erimental set-up to
12 (2)	(ii) Use your source. d) The technicia Suggest a cha determine the	aph of these resu graph to deter an repeats the ex ange the technic e half-life of the	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	adiation source. erimental set-up to
13. (a)	(ii) Use your source. d) The technicia Suggest a cha determine the	aph of these resu graph to deter an repeats the ex ange the technic e half-life of the ding will include th	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	adiation source. erimental set-up to
13. (a)	(ii) Use your source. d) The technicia Suggest a char determine the technic the technic source. 	aph of these resu graph to deter an repeats the ex ange the technic e half-life of the ding will include th	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	adiation source. erimental set-up to
13. (a)	(ii) Use your source. d) The technicia Suggest a char determine the technic source and backs 	aph of these resu graph to deter an repeats the ex ange the technic e half-life of the ding will include th ground count.	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	e gamma radiation adiation source. erimental set-up to ustify your answer.
13. (a)	(ii) Use your source. d) The technicia Suggest a char determine the determine the source and background will in the source and background will in the source will be source will in the source will be source will in the source will be sourc	aph of these resu graph to deter an repeats the ex ange the technic e half-life of the ding will include th ground count.	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	adiation source. erimental set-up to
13. (a)	(ii) Use your source. d) The technicial Suggest a charactermine the determine the determine the source and background will a subtracted. 	aph of these resu graph to deter an repeats the ex- ange the technic e half-life of the ding will include the ground count.	mine the operiment ian must e alpha ra	: with an alpha ra make to the exp	adiation source. erimental set-up to
13. (a)	(ii) Use your source. d) The technicia Suggest a char determine the determine the determine the source and backs OR Background will in subtracted. OR To measure/determine 	aph of these resu graph to deter an repeats the ex- ange the technic e half-life of the ding will include the ground count.	mine the operiment ian must e alpha ra	with an alpha ra make to the exp diation source. J	adiation source. erimental set-up to

No.		CONTENT		
(c)	(i) (ii)	detector and the source).(1)Alpha is absorbed by a few cm of air/range in air is a few cm.ORAlpha has a shorter range (than gamma).(1)	2	Suggestion must be correct, otherwise (0 marks). Accept: 'move the source closer (to the detector)'. Do not accept: 'alpha is weaker/gamma is stronger'. No unit required but if wrong unit stated MAX (2). Accept 1-4 sig figs: 8000
20.21	1 T	can describe an experiment to denaterial. Describe an experiment to measure half ake background radiation into account ime, and how you use the graph to calc (i) Measure the count in a set time (ii) Repeat at (regular) intervals (iii) Measure background (count) Put the source next to a Geiger Muller measure the activity at regular time its initial value. Now remove the sou activity. Subtract the background act plot a graph of the corrected activity how long it takes the activity to half	f-life. A , how y culate f me inte (1) and su er tube interva rce and civity fi y agains	Make sure you include how you you measure the activity and the the half-life. erval (1) abtract (1) e and counter, and repeatedly als, until it is a small fraction of d measure the background rom the previous readings, and st time. Use the graph to find
20.21.	2	An experiment is carried out in a labo radioactive source. A Geiger-Müller tu background radiation over a period of times and an average value of 4 count	be and 10 sec s in 10 tim	counter are used to measure the onds. This is repeated several seconds is recorded.

JA Hargreaves

No.	CONTENT
	Nuclear fission is the splitting of a large atomic nucleus such as uranium into smaller nuclei with the release of energy.
	Nuclear fission can be spontanteous or induced.
20.22.2	 (i) State the difference between these two types of fission (ii) State whether a nuclear reactor would use an isotope that undergoes spontanseously or induced fission, you must justify your answer.
	i) Induced fission is when fission occurs due to collision with a neutron
	Spontaneous fission is the breaking up of a large nucleus into smaller nuclei without being struck by a neutron.
	 ii) A nuclear reactor in a power station must use an isotope that undergoes induced fission or it cannot be controlled/ stopped. If the neutrons are absorbed in a reactor the fission reaction which stop. In spontaneous fission the reaction cannot be controlled.
20.22.3	Explain what is meant by the term chain reaction.
	neutrons can go on to cause further (fission) reactions/split more (uranium) nuclei (1) causing a chain reaction/this process repeats (1)
	Describe the function of the following parts of a nuclear reactor
20.22.4	 (i) Containment vessel (ii) Fuel rods (iii) Moderator (iv) Control Rods (v) Coolant.
	 (i) The containment vessel prevents/reduces release of radiations OR radioactive gases OR radioactive substances etc. (ii) Contains the nuclear fuel used in a nuclear reactor The nuclear fuel reduces are precised and remember of the pre-
	rods are sealed ,narrow metal tubes. (iii) The moderator slows neutrons.
	(iv) The control rods absorb neutrons
	(v) The propose of the coolant is to removed heat from the reactor core and take it to the place of its utilisation eg. steam turbine.
20.22.5	State the common element used in nuclear fission to generate energy.
	Uranium (although Plutonium can be used)


No.	CONTENT		
20.22.6	SQA Int 2 2013 A student is researching information on nuclear reactors. The following diagram is found on a website. It illustrates a type of reaction that takes place in a reactor. (i) State the type of nuclear reaction shown in the diagram. (induced) fission (ii) The labels have been omitted at positions P, Q, R and S on the diagram. Copy out the diagram and correctly name the parts labelled P,Q,R and S. P (slow) NEUTRON Q (fissionable) NUCLEUS R (fast) NEUTRON S FISSION Fragments / DAUGHTER PRODUCT NUCLEI (b) Name the part of the reactor whose function is to prevent release of radiation beyond the reactor. Containment vessel (c) Disposal of some types of radioactive waste from nuclear reactors is particularly difficult. Give a reason for this difficulty. It remains radioactivity for hundreds or thousands of years. (d) Electricity can be generated using fossil fuels or nuclear fuel. State one advantage of using nuclear fuel.		
	It generates lots of energy per kilogram of fuel		
	(The energy produced is very predicatable)		
20.22.7	neutron + energy		

No.	CONTENT		
	Explain how a single reaction can lead to the continuous generation of energy.		
	neutrons can go on to cause further (fission) reactions/split more (uranium) nuclei (1)		
	causing a chain reaction/this process repeats (1)		
20.22.8	The nuclear reactor produces waste that emits nuclear radiation.		
20.22.0	State a use of nuclear radiation.		
	any suitable use (eg treating cancer/tracers/ sterilisation/smoke detectors/ measuring thickness of paper), generating energy.		
	SQA Int 2 2010 control rods		
	Many countries use nuclear reactors to produce energy. A diagram of the core of a nuclear reactor is shown.		
	(a) State the purpose of:		
	(i) the moderator; the moderator slows neutron		
	(ii) the control rods. absorbs neutrons		
	(b) One nuclear fission reaction produces $2 \cdot 9 \times 10^{-11}$ J of energy. The power output of the reactor is $1 \cdot 4$ GW. Determine the number of fission reactions produced in one hour.		
	E = Pt		
20.22.9	$E = 1 \cdot 4 \times 10^9 \times 3600 = 5 \cdot 04 \times 10^{12} J$		
	No. of reactions = $\frac{total energy}{energy for one reaction}$		
	energy for one reaction		
	No. of reactions = $\frac{E_{total}}{E_{reaction}} = \frac{5 \cdot 04 \times 10^{12}}{2 \cdot 9 \times 10^{-11}} = 1.7 \times 10^{20}$		
	(c) State one advantage and one disadvantage of using nuclear power for the generation of electricity.		
	Advantages		
	• Nuclear fuels do not produce carbon dioxide or sulfur dioxide, unlike fossil fuels.		
	Disadvantages		
	 Like the fossil fuels, nuclear fuels are non-renewable energy resources. They will run out one day if we keep on using them. 		

No.	CONTENT		
	 If there is an accident, large amounts of radioactive material could be released into the environment. Nuclear waste remains dangerously radioactive and harmful to health for thousands of years. It must be stored safely. 		
	Advantages Disadvantages		
	No release of carbon dioxide (CO ₂) - greenhouse gas Non-renewable source - will eventually		
	No release of sulphur dioxide (SO $_2$) - acid rain	Expensive to commission and decommission power stations	
	1 kg of uranium produces millions times more energy than 1 kg of coal	Hazardous radioactive waste produced	
		Danger of release of radioactive materials into the environment	
20.23	I can provide a qualitative description role in the generation of energy.	n of fusion, plasma containment, and their	
20.23.1	Explain the term nuclear fusion.		
	Fusion is a nuclear reaction in which small atomic nuclei of (low atomic number) fuse to form a heavier nucleus with the release of energy.		
	Nuclear fusion reactors are in the dev	elopment stage.	
20.23.2	(i) State an advantage of nucle generating electrical energy	ear fusion over nuclear fission as a way of	
	(ii) State a major difficulty with	n building fusion reactors	
	(iii) State why this type of gener	rator is not currently in use commercially.	
	(i) 1) No dangerous radioactiv	e waste	
	2) More energy is produced		
	(ii) Extremely high temperatures are required to start the reaction.		
	(iii) More energy is needed to start the reaction than is obtained from the reaction, (i.e. it is a net consumer of energy)		
20.23.3	Nuclear fusion is the main way energy is generated in the Sun. State the simplified equation that shows this reaction.		
	Inside the Sun, the process begins with protons (a lone hydrogen nucleus) and through a series of steps, these protons fuse together and are turned into helium.		
	2(p + p + p)-> Helium nucleus + 2 p		
	2(Hydrogen + Hydrogen + Hygrogen)-> Helium + 2 Hydrogen		

No.	CONTENT		
	1. Two protons within the Sun fuse. Most of the time the pair breaks apart again, but sometimes one of the protons transforms into a neutron via the weak nuclear force. Along with the transformation into a neutron, a positron and neutrino are formed. This resulting proton-neutron pair that forms sometimes is known as deuterium.		
	2. A third proton collides with the formed deuterium. This collision results in the formation of a helium-3 nucleus and a gamma ray. These gamma rays work their way out from the core of the Sun and are released as sunlight.		
	3. Two helium-3 nuclei collide, creating a extra protons that escape as two hydroge nuclei forms first but is unstable and thus dinucleus.	n. Technically, a beryllium-6	
	Inner poloidal field coils (Primary transformer circuit) Poloidal magnetic field (for plasma positioning and shaping)	The diagram below shows a functioning nuclear fusion reactor.	
		(i) State the temperatures in the nuclear reactor required to allow fusion.	
20.23.4	JG05.537-10	(ii) Explain the term plasma and(iii) State the material in the reactor which is a plasma.	
	Resulting helical magnetic field Toroidal field coils Plasma electric current Toroidal magnetic field (secondary transformer circuit)		
	Fusion requires temperatures about 100 million times hotter than the sun's core).	n Kelvin (approximately six	
	At these temperatures, hydrogen is a plasma, not a gas. Plasma is a high- energy state of matter in which all the electrons are stripped from atoms and move freely about.		
20.23.5	State the potential advantages of nuclear fusion over nuclear fission.		
	Advantages of nuclear fusion process over nuclear fission to generate electricity are:		
	 More energy is produced for the mass. Hence fusion of a very small mass generates large amount of energy. UNLIKE FISSION THE PRODUCTS OF FUSION REACTIONS ARE NOT RADIO-ACTIVE (WHICH ARE HIGHLY HAZARDOUS AND NEED TO BE STORED SAFELY FOR LONG PERIODS) THEY ARE HARMLESS AND CAN BE REPLACED EASILY. 		

No.		CONTENT
FIGURE 1: ITE		https://science.howstuffworks.com/fusion-reactor4.htm
Oute	urtesy of ITER	
Sti Toroidal	ructur HOW	
Field Coil	NUCLEAR FUSION	
	REACTOR	
	S WORK BY CRAIG	
	FREUDENRI CH, Ph.D.	
0	MAGNETIC	
	CONFINEME NT: THE	
Poloidal Field Coil		
Machin Sup	e Gra ports PARTS OF	
	THE ITER TOKAMAK	
	REACTOR	
	ARE:	
	 Vac uum 	
	vess el -	
	hold s	
	the plas	
	ma	
	and kee	
	ps the	
	reac tion	
	cha mbe	
	r in	
	a vac	
	uum • Neu	
	tral	

- **MAGNETIC-CONFINEMENT FUSION PROCESS**
 - The fusion reactor will heat a stream of deuterium and tritium fuel to form hightemperature plasma. It will squeeze the plasma so that fusion can take place. The power needed to start the fusion reaction will be about 70 megawatts, but the power yield from the reaction will be about 500 megawatts. The fusion reaction will last from 300 to 500 seconds. (Eventually, there will be a sustained fusion reaction.)
 - The lithium blankets outside the plasma reaction chamber will absorb high-energy . neutrons from the fusion reaction to make more tritium fuel. The blankets will also get heated by the neutrons.
 - The heat will be transferred by a water-cooling loop to a heat exchanger to make steam.
 - The steam will drive electrical turbines to produce electricity.
 - The steam will be condensed back into water to absorb more heat from the reactor in the heat exchanger.
 - Initially, the ITER tokamak will test whether a sustained fusion reactor is feasible and eventually will become a test fusion power plant.

No.	CONTENT
20.23.6	Summarise the video clip below, using bullet points. https://www.bbc.co.uk/bitesize/clips/z4nwmp3
	 JET project Oxford hottest place on Earth 10 x hotter than sun Centre of the sun 15 million degrees Celsius Cheap, safe form of E releasing no harmful gases or dangerous waste. Sun releases E by FUSION in the plasma (4th state of matter) T so high electrons don't stay attached to atoms, atoms don't exist e- ,p+, n exist alone moving fast, p normally repel as same charge, but in plasma, with high T can fuse. Fused p form He nuclei Sun process on Earth could create great energy, but need to create high temperatures Problems- working with high temperatures, keeping particles from sides prevents particles cooling, do this with magnetic field. Very safe, if something goes wrong, it cools and the reaction stops.
20.23.7	Copy and complete Nuclear <u>fission</u> is the process by which <u>energy</u> is released when a large <u>nucleus</u> is hit by a <u>neutron</u> , becomes unstable and splits into <u>two</u> or <u>three</u> smaller pieces, called <u>fission fragments</u> or <u>daughter nuclei</u> plus two or three <u>neutrons</u> . When fission occurs, some of the <u>mass</u> of the <u>reactants</u> is 'lost' - it has been converted directly into <u>energy</u> This energy is in the form of <u>heat</u> which can be harnessed and used to generate <u>electricity/ electrical energy</u> in a nuclear power station.
20.23.8	Copy and complete the following Nuclear <u>fusion</u> is the process by which <u>energy</u> can be released when two <u>small</u> nuclei fuse together to form a <u>larger</u> nucleus.
20.23.9	Copy and complete the following passage During a nuclear <u>fusion</u> reaction two nuclei of smaller mass number combine to produce a nucleus of larger mass number. During a nuclear <u>fission</u> reaction a nucleus of larger mass number splits into two nuclei of smaller mass number. Both of these reactions are important because these processes can release <u>energy</u> .
20.23.1 0	State the requirements for a containment vessel used to contain a nuclear fusion reaction.
	The containment vessel needs to cope with high temperatures and high pressures.

No.	CONTENT	
	Do this with Magnetic confinement which uses magnetic and electric fields to heat and squeeze the hydrogen plasma.	
	Or Inertial confinement uses laser beams or ion beams to squeeze and heat the hydrogen plasma.	

Notes

PHYSICS IN NUMBERS

Find the correct number from your notes, learn these numbers. Your syllabus could have many of the answers, so use it! Don't forget to include relevant units or your answer is meaningless.

e.g State the height above the Earth of a satellite if placed in geostationary orbit. 36 000 km

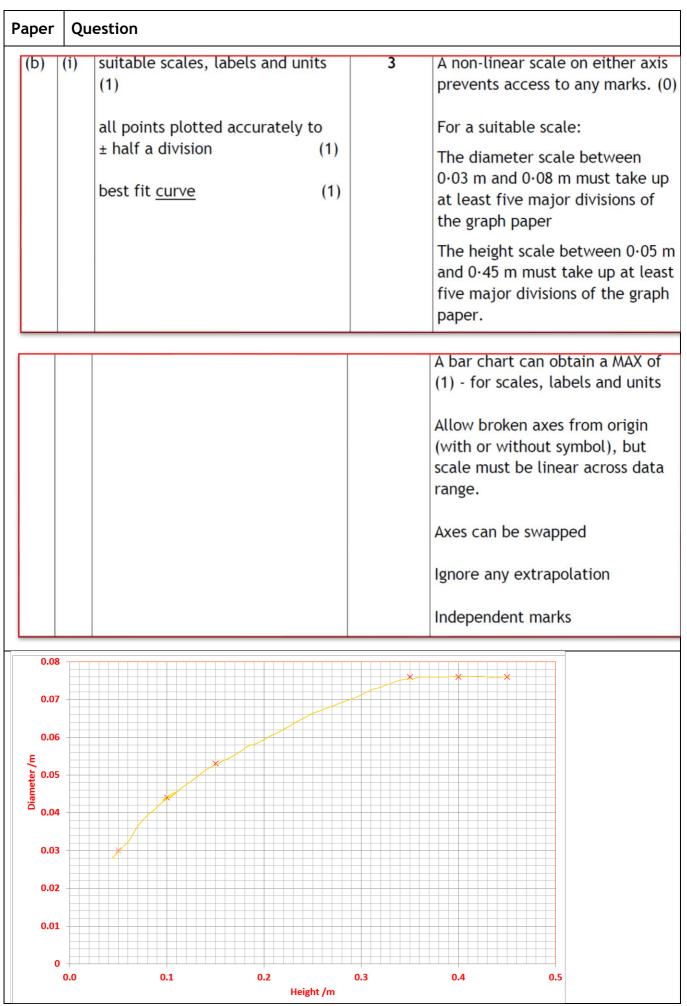
1. S	State the number of milliamps in an amp.	1000
2. S	State the number of metres in a kilometre.	1000
3. S	State the number of ohms in a megaohm.	1 000 000
4. S	State the number of centimetres in a metre.	100
5. S	State the number of Joules in a gigajoule.	1 000 000 000
6. S	State the number of seconds in a minute.	60 s
7. S	State the number of seconds in an hour.	3600 s
8. S	State the voltage of the mains supply in the UK.	230 V
9. S	State the frequency of the mains supply in the UK.	50 Hz
10. S	State the speed at which a electrical signals is transmitted along a wire at a speed.	Almost 3.0 × 10 ⁸ ms ⁻¹
11. S	State the speed of light in air.	3.0 × 10 ⁸ ms ⁻¹
12. S	State the speed of light in glass, eg in a fibre optic cable.	2.0 × 10 ⁸ ms ⁻¹
13. S	State the speed of microwaves in air.	3.0 × 10 ⁸ ms ⁻¹
14. S	State the speed of a television signal in air.	3.0 × 10 ⁸ ms ⁻¹
15. S	State the speed of a radio signals in air.	3.0 × 10 ⁸ ms ⁻¹
16. S	State the value of the gravitational field strength on the Earth.	9.8 Nkg ⁻¹
17. S	State the speed of X-rays in air.	3.0 × 10 ⁸ ms ⁻¹
18. S	State the speed gamma radiation travels in air.	3.0 × 10 ⁸ ms ⁻¹
19. \$	State the two usual size of fuse that are usually fitted in a 13A plug.	3A, 13A

20. State the number of joules of energy in 1 kWh.	3 600 000
21. State the initial acceleration of all objects when initially falling to Earth.	9.8 ms ⁻²
22. State the weight of a 1kg object on the Earth	9.8 N
23. State the mass of the 1kg object in space	1 kg
24. State the approximate speed of sound in air.	3.0 × 10 ⁸ ms ⁻¹
25. State the approximate speed of ultrasound in air.	3.0 × 10 ⁸ ms ⁻¹
26. State if sound travels faster or slower in solids than in air.	Faster in solids

VARIABLES & EXAM QUESTIONS

Paper	Question
SQA	The energy of a water wave can be calculated using
2018	$E = \frac{\rho g A^2}{2}$
	where: E is the energy of the wave in J ρ is the density of the water in kg m ⁻³ g is the gravitational field strength in Nkg ⁻¹ A is the amplitude of the wave in m.
	A wave out at sea has an amplitude of 3.5 m. The density of the sea water is 1.02×10^3 kgm ⁻³ . Calculate the energy of the wave.
Answer:	6·1 × 10 ⁴ J
	$E = \frac{\rho g A^2}{2}$ $E = \frac{1.03 \times 10^3 \times 9.8 \times 3.5^2}{2} = 6.1 \times 10^4 J$
SQA N5 2019	The table gives the distance from Earth, the approximate surface temperature and the age of five stars.

Paper	Question						
	Star	Distance from Earth (light-years)	Approximate surface temperature (K)	Age (years)			
	Sirius A	8.6	9900	$2\cdot4 imes10^8$			
	Polaris	430	6000	$7.0 imes 10^7$			
	Betelgeuse	640	3600	$7.9 imes 10^{6}$			
	Rigel	860	11 000	8·0 × 10 ⁶			
	VY Canis Majoris	3900	3500	$1.0 imes 10^7$			
	I As the distance from II As the age of a increases. III There is no app	n Earth increases, the a star increases, the a parent relationship t	ased on this information age of a star decreases. pproximate surface ter petween the distance	nperature of the sta			
	approximate surface temperature of a star. Copy out the table and the correct statements.						
SQA N5 2018	A rain sensor is attached to the glass windscreen of a vehicle to automatically control the windscreen wipers. raindrop LEDs rain sensor infrared detectors glass windscreen refracted light						
	Infrared light is emitted from LEDs and is received by infrared detectors.						
	The graph shows how the number of raindrops affects the percentage of						
	infrared light received by the infrared detectors.						
	percentage of infrared light received by infrared detectors 50 0 0 0 loo		high f raindrops				
	The percentage of infrared light received by the infrared detectors from the LED controls the frequency with which the windscreen wipers move back and forth.						
	The table shows how the number of times the windscreen wipers move back and forth per minute relates to the number of raindrops.						


Paper	Question					
	Number of raindrops	Number of times t move back and				
	low		18		-	
	medium		54			
	high		78			
					e 70% of the infrared light he windscreen wipers at this	
<i>N</i> = 5	4	(1)	3	'Show' ques	stion	
$f = \frac{1}{2}$	N	(1)	Must state the correc			
f = - f = -	7 5 <u>4</u> 60 0 · 90 Hz	(1)		Final answer	of 0.90 Hz or 0.9 Hz, it, must be shown,	
				method if su	nly be awarded for this Ibstitution for of the period is shown.	
				$f = \frac{1}{T}$ $f = \frac{1}{1 \cdot 11}$	(1) (1)	
				$f = 0 \cdot 90 \text{ Hz}$	z	
		ds calculating N or or t is the same as			inal statement to show the he question.	
5QA N5	Catapults are into water.	used by anglers to p	project	fish bait ^{ball}	of fish bait	
2014	A technician designs a catapult for this use. Pieces of elastic of different thickness are used to provide a force on the ball.					
	Each piece of elastic is the same length.					
	The amount o the same each	f stretch given to time.	each e	elastic is		
	The force exe	rted on the ball i	ncrease	s as the	U	

Paper	Question					
	thickness of the elastic increases.					
	Thickness	Mass of				
	of elastic (mm)	ball (kg)	Which row in the table shows the combination of the			
	5	0.01	thickness of elastic and mass of ball that produces the greatest acceleration?			
	10	0.01				
	10	0.02				
	15	0.01				
	15	0.02				
SEB O Level 1976		o is pulled t	m in its rest position A. The pendulum, bob has a mass of 0.3 to one side as shown in Figure 2 and held in position A which t position			
			The bob is released from position B and swings to and fro until it comes to rest.			
	• – – – – A fig. 1	0.8 m	 (a) Find the gain in potential energy of the bob when it is moved from position A to position B. (b) State the position of the bob when it has its greatest kinetic energy. (c) Estimate the maximum speed of the bob. (d) Describe the energy changes which take place from the time the bob fig.2 			
(a)			$E_n = mgh$			
			$E_p = ingn$ $E_p = 0.3 \times 9.8 \times 0.8 = 2.4 J$			
(b) ⁻ (c)	The bob has	the greate	$L_p = 0.3 \times 9.6 \times 0.0 = 2.49$ est Ek when it is at the bottom of the swing			
			$E_{kgained} = E_{plost} = \frac{1}{2}mv^2$			
			$2.4 = \frac{1}{2} \times 0.3 \times \boldsymbol{v}^2$			
			$\frac{2\times 2.4}{0.3}=v^2$			
			$v = \sqrt{\frac{2 \times 2.4}{0.3}} = 4.0 \ ms^{-1}$			
			the swing is converted to Ek with the maximum Ek at the Some energy is transferred to heat in the air due to			

Paper	Question						
1	frictional forces, ie air resistance/ drag l	oetwee	n the bob/string and air.				
SQA	A resistor is labelled: "10 Ω ± 10%, 3 W".						
Int2 2012	This means that the resistance valuation actually be between 9 Ω and 11 Ω .	ue co	uld				
	(<i>a</i>) A student decides to check the value Draw a circuit diagram, including a 6 V b circuit that could be used to determine t	attery,	a voltmeter and an ammeter, for a				
	(b) Readings from the circuit give the voltage across the resistor as 5.7 V and the current in the resistor as 0.60 A. Use these values to calculate the resistance.						
	(c) During this experiment, the resistor b Explain why this happens. You must include a calculation as part of						
	(<i>d</i>) The student states that two of the they were connected together in paralle Is the student correct? Explain your answ	l with t					
24. (¢		$\binom{1}{2}$ for p One cell	e each symbol (2) osition of each meter (voltmeter across battery = OK) (1) drawn - unacceptable not needed				
(t	b) $V = IR$ (1/2)						
	$5.7 = 0.60 \times R \tag{1/2}$						
	$R = 9.5 \Omega \tag{1}$	10 Ω OK					
		$P = \frac{V^2}{R}$	or $P = I^2 R O K$				
(0	, , , , , , , , , , , , , , , , , , ,						
	$P = 5.7 \times 0.60$ (¹ / ₂)	Values m	ust be consistent with (b).				
	P = 3.42 W (1) This is greater than the 3W or labelled power rating (so it (1) overheats).						
	(d) No	(1/2)	NO on its own = $(\frac{1}{2})$				
	In parallel the voltage is still the same/6V across each	(72)					
	resistor	(1)					
	So power is the same	(1/2)					
			(OR correct calculations)				
			1				

Paper	Ques	tion						
QA	Crate	ers on the Moon are	e caused by met	eors striki	ing its surfa	ce.		
N5 2015	sand	marble						
		Before	After		A line			
		Before After A student investigates how a crater is formed by dropping a marble into a tray of sand.						
	(i) Describe the energy change that takes place as the marble hits the sand The student drops the marble from different heights and measures the diameter o each crater that is formed.							
	The t	able shows the stu	height (m)	diameter				
	(i	 Using the graph these results. 	0.05	(m) 0.030				
	(i		h to predict the	diameter	r of the	0.10	0.044	
		crater that is	0.15	0.053				
		dropped from	0.35	0.074				
	(1)	 v) Suggest two in could make to 	0.40	0.076				
	 could make to this investigation. 0.45 0.076 (v) Suggest another variable, which could be investigated, that may affect the diameter of a crater. 							
(a)	(i) j	$E_p = mgh$	(1)	3	Accept:			
		-			0·2 J			
		$E_P = 0.040 \times 9.8 \times 0.5$	0 (1)		0∙20 J			
	1	$E_P = 0.20 \text{ J}$	(1)		0∙196 J			
		(inetic (energy) to ound)	heat (and	1	Accept:			
		DR			E_k to E_h			
	C				Do not ac	cont:		

JA Hargreaves

