N5 Dynamics S3 Revision

Acceleration	Area	Current	Displacement	Distance
Energy	Force	Frequency	Gravitational field strength	Mass
Momentum	Pressure	Resistance	Weight/ friction etc	Temperature
Time	Velocity	Voltage	Volume	Speed

Method 2: Draw sketch of vector diagram, but not to scale.

Using Pythagoras

$$
\begin{gathered}
R^{2}=a^{2}+b^{2} \\
R^{2}=30^{2}+10^{2} \\
R=31.6 \mathrm{~N} \\
\tan \theta=\frac{o p p}{\text { adj }}, \tan \theta=\frac{30}{10} \\
\tan ^{-1} \theta=3, \theta=72^{\circ}
\end{gathered}
$$

In some cases that means that the two vectors have to be redrawn so that they are being added "head to tail". See example below.

Then join a line from the tail of the first vector to the head of the second vector. This is the resultant vector.

Acceleration is the change in velocity per unit time.

$$
a=\frac{v-u}{t}=\frac{\Delta v}{t}
$$

$$
\Delta v=v-u
$$

Gradient= rise/run

Or v/h
In our case that is
vertical $=(v-u)$
horizontal $=t$
gradient $=(v-u) / t$
gradient $=$ acceleration

$$
\begin{aligned}
& \text { SoLUTION } \\
& v=18 ; u=6 ; t=10 \\
& \qquad a=\frac{v-u}{t} \\
& a=\frac{18-6}{10}=1.2 \mathrm{~ms}^{-2}
\end{aligned}
$$

Solution using gradient

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{2}}
$$

$$
\mathrm{m}=\mathrm{a}=\frac{18-6}{10-0}=1.2 \mathrm{~ms}^{-2}
$$

It is best to split the area under the graph into rectangles and triangles. Calculate the area of each and then add them together. [Area of a triangle is $1 / 2$ base x height]

Distance travelled $=$ area $1+$ area $2+$ area 3
Distance travelled $=(1 / 2 \times 12 \times 4)+(12 \times 6)+(1 / 2 \times 6 \times 12)$
Distance travelled $=24+72+36=132 \mathrm{~m}$
Mass is a measure of the amount of matter (stuff) in an object. It is measured in kilograms
(kg). Weight is a force and it is the pull of gravity acting on an object. It is measured in Newtons. on Earth g is equal to $9.8 \mathrm{Nkg}-1$

Weight $=$ mass \times gravitational field strength

$$
W=m g
$$

" g " is the gravitational field strength. It is measured in NEWTONS PER KILOGRAM. It is the WEIGHT PER UNIT MASS (force of gravity on every kilogram)

A force can change an object's:
$>$ direction of motion (an acceleration)
$>$ shape
> speed (cause an acceleration)
> start a mass moving (cause an acceleration)
Newton's First Law : A body will remain at rest or travel at a constant speed in a straight line, unless acted upon by an unbalanced force.
Newton's Second Law we normally write as a formula:

$$
F_{u n}=m a
$$

UnbalancedForce $=$ mass \times acceleration
$($ Newtons $)=($ Kilogram $) \times($ metres per second squared $)$
Newton's Third Law states: For every action there is an equal but opposite reaction.
Or If A exerts a force on B, B exerts an equal but opposite force on A.
Difference between N1 and N3 Laws

1. A car of mass 1000 kg experiences friction equal to 500 N . If the engine force is 1300 N , what will be the car's acceleration?

Resultant or unbalanced force $=1300-500=800 \mathrm{~N}$
$\mathrm{F}=\mathrm{ma}$
$800=1000 \times a$
$\mathrm{a}=\frac{800}{1000}$
$\mathrm{a}=0.8 \mathrm{~ms}^{-2}$

Difference between Newton's first and third laws
Skydiving

