

N5 Physics
5.1 I can state that energy is never created or destroyed, it is conserved.

I can identify and explain energy conversions and transfer.
5.3

I can apply the principle of 'conservation of energy' to examples where energy is transferred between stores.
5.4

I can use Ew=Fd to solve problems involving work done, unbalanced force, and distance or displacement.
5.5 I can identify and explain 'loss' of energy where energy is transferred. I can define gravitational potential energy. Ep is the energy an object has because of its position above the Earth's surface and its mass
I can use $E p=m g h$ to solve problems on involving gravitational potential energy, mass, gravitational field strength and height
5.8 I can define kinetic energy as the energy an object has because of its speed.
5.9 I can use $E k=1 / 2 m v^{2}$ to solve problems involving kinetic energy, mass and speed
5.10 I can use $E w=F d, E p=m g h, E k=1 / 2 m v^{2}$ to solve problems involving conservation of energy

The Principle of the Conservation of Energy
State the law!

- (states that) energy cannot be created or destroyed - it can only transformed from one store of energy to another. Energy is conserved - the total amount of energy present stays the same before and after any changes.

Stores and
 Pathways

Store a part of a system which can be measured to tell us about the energy available.

Pathway a physical process which transfers energy from one store to another.

ENERGY 'LOSS'

- We often talk about energy loss. But, energy cannot be destroyed it can be changed.
- The problem is that it doesn't always change the way we want. We often say that the type of energy we are after is the 'useful' energy and that any other forms of energy that our energy store is transferred into are 'wasted' energy. For example, electrical energy in a light bulb is transferred into light (useful energy) and heat (wasted energy).

Stores and equations

Work

- At the moment you probably feel that you are doing lots of work. But in Physics work has a special meaning
- When you push something to make it move you are doing work. Work is also done when a locomotive pulls a train or when a crane lifts a load.

Work done

Work is the energy transferred to

 or from an object via the application of force along a displacement.The work done, or the energy transferred, depends on the force exerted and the distance moved in the direction of the force.

work done $=$ force \times distance

$$
E w=F d
$$

Where

- force is measured in Newtons
- distance is measured in metres,
- work done is measured in joules.

Symbol	Definition	Unit	Unit symbol
E_{W}	Energy	joules	J
F	Force	newtons	N
\boldsymbol{d}	distance	metres	m

Quantities \& Symbols

Examples

1. A shopper pushes a supermarket trolley a distance of 600 m with a force of 70 N . Calculate work done.
2. A locomotive pulls a carriage a distance of 1.6 km with a force of 28000 N . Calculate the work done
3. The brakes of a car exert a force of 500 N to stop the car. If the braking distance is 67 m calculate the work done by the brakes to stop the car.

A special case- Gravitational Potential energy

When a force lifts an object, the work done by the force is stored as gravitational potential energy.

Force, F
m

The force required to lift an object is equal to the weight of the object. However, the weight depends on the mass and the gravitational field strength.

$$
\text { work done }=\text { force } \times \text { distance }
$$

$$
E_{w}=F d
$$

For this special case, $F=m g$ and $d=h$. (We use h to remind us that the distance here is the height the object is lifted) So

$$
\begin{gathered}
\text { work done }=\text { force } \times \text { distance } \\
\qquad \begin{array}{c}
E_{w}=F d \\
E_{w}=m g h
\end{array}
\end{gathered}
$$

The symbol E_{p} is used for gravitational potential energy so,

$$
E_{p}=m g h
$$

Gravitational Potential Energy Examples

A lift moves a 45 kg girls up 9 m from the ground floor to the top floor. Calculate the girl's gain in gravitational potential energy

A boy lifts a 3.8 kg school bag up to 0.92 m from the floor to the bench. Calculate the gain in the gravitational potential energy of the bag.

- 1. A locomotive exerts a pull of 10000 N to pull a train of loaded wagons a distance of 300 m . Calculate the work done.
- 2. A gardener pushes a lawnmower with a force of 150 N for a distance of 220 m . Calculate the work done.
- 3. If a girl uses 1200 J of energy pushing a trolley a distance of 60 m , how big is the force she exerts?
- 4. The brakes on a car do 900000 J of work when bringing it to a halt. If the stopping distance is 125 m , Calculate the force do the brakes exert.
- 5. If the force produced by the brakes was only 1000 N in question 4, and the brakes still do 900000 J of work, what would be the new stopping distance?
- 6. The force of friction between a pencil and paper is 0.12 N . Calculate the distance you'd push a pencil to do 5 J of work.
- 7. A mountain rescue helicopter winches up an injured climber of mass 65 kg a distance of 30 m from a rock edge. Calculate the gain in gravitational potential energy.
- 8. Calculate the gain in gravitational potential energy when a 50 kg sack of potatoes is lifted 0.85 m up onto a lorry.
- 9. Estimate the gravitational potential energy you would gain if you were winched up 30 m to the top of a funfair ride.
- 10. A fork lift truck is to be used to load a crate of mass 200kg onto a lorry.

It has to drive 12 m to the lorry and then lift the crate up 1.5 m onto the lorry. The driving force is 500 N and the energy available to complete the operation is 8000 J . Will the fork-lift truck be able to load the crate onto the lorry? Justify your answer by calculations.

mım
 Summary of Ep

- We can calculate gravitational potential energy by using the following formula:
$E p=m \times g \times h$
Where
- $\quad E_{p}$ is the gravitational potential energy in Joules
- $\quad \mathrm{m}$ is the mass of the object in kg
- $\quad \mathrm{g}$ is the gravitational field strength $=9.8 \mathrm{~ms}^{-2}$
- $\quad \mathrm{h}$ is the height of the object in metres

Kinetic Energy

- Kinetic energy is the name given to the energy something has because it is moving. It is given the symbol Ek. The formula is an odd one, and some people can find it hard to rearrange, but just take it step by step and it is fine.
- The more massive and the greater the speed it is travelling, the greater the object's kinetic energy.
- We can calculate the kinetic energy of moving objects by using the following formula:

$$
E_{k}=\frac{1}{2} m \times v^{2}
$$

- Kinetic energy $=1 / 2 x$ mass x speed squared
- Kinetic energy $=1 / 2 x$ mass x speed x speed
where
- Ek is the kinetic energy in Joules
- m is the mass of the object in kg
- v is the velocity of the object in metres per second, m / s or $\mathrm{ms}-1$
- Ek is a SCALAR quantity

Example

A wimpy kid on an office chair, with a combined mass of 65 kg is travelling at $12 \mathrm{~m} / \mathrm{s}$. Calculate E_{k}.

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{k}}=\frac{1}{2} \boldsymbol{m} \boldsymbol{v}^{2} \\
& \boldsymbol{E}_{\boldsymbol{k}}=\frac{1}{2} \times 65 \times 12^{2} \\
& \boldsymbol{E}_{\boldsymbol{k}}=32.5 \times 144 \\
& \boldsymbol{E}_{\boldsymbol{k}}=4680 \boldsymbol{J} \quad\left(\boldsymbol{E}_{\boldsymbol{k}}=4700 \boldsymbol{J}\right)
\end{aligned}
$$

simulator

- https://phet.colorado.edu/sims /html/energy-skate-park/latest/energy-skatepark_en.html

Summary

Quantity		Symbol	Unit
	Ek	Joules	Unit
Kinetic Energy	Ew or W	Joules	J
Work done	Ep	Joules	J
Gravitational potential energy			J
	h	metres	\mathbf{m}
Height	\mathbf{v}	metres per second	ms $^{-1}$
Speed			

Worked example:

A crane lifts a crate of mass of 60 kg to a height of 60 m .
(a) calculate the gravitational potential energy gained by the crate
(b) if the cable of the crane snaps once it has completed lifting the crate, calculate the maximum velocity of the crate just as it reaches the ground (ignoring air resistance)
a) Using the equation

$$
\begin{aligned}
E p & =m \times g \times h \\
E p & =60 \times 9.8 \times 25 \\
E p & =15,000 \mathrm{~J} \quad \text { Mass, } m=60 \mathrm{~kg} \text { Height, } \mathrm{h}=25 \mathrm{~m} \text { Gravitational field strength, } \mathrm{g}=9.8 \mathrm{Nkg}-1
\end{aligned}
$$

b b) If the crate falls, all of its potential energy will be transformed into kinetic energy. We are told to neglect air resistance - this means we can ignore any loss of energy to heat.

- We can say that the gravitational potential energy, Ep is equal to the kinetic energy, Ek, therefore:
- $E p=E k=15,000 \mathrm{~J}$ as worked out previously
- Using the equation

$$
\begin{gathered}
\text { Ek }=1 / 2 \times \mathrm{m} \times \mathrm{v}^{2}=15,000 \mathrm{~J} \\
15,000=1 / 2 \times 60 \times \mathrm{v}^{2} \\
\mathrm{v}^{2}=(15,000 \times 2) / 60=500 \\
\mathrm{v}=22.7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Energy cannot be created or destroyed we can only transfer it from one place to another. When we drop an object the GRAVITATIONAL POTENTIAL ENERGY is converted to KINETIC ENERGY, provided there are no losses due to friction.

$$
\begin{aligned}
\text { Ep lost } & =\text { Ek gained } \\
\mathrm{mgh} & =\frac{1}{2} m v^{2}
\end{aligned}
$$

the m cancels indicating that the speed on landing is independent of mass

$$
\begin{gathered}
\text { giving } \\
\text { gh }=\frac{1}{2} v^{2} \\
2 g h=v^{2}
\end{gathered}
$$

a) A car of mass 1050 kg and moving at $22.5 \mathrm{~m} / \mathrm{s}$. Calculate its kinetic energy.

$$
\begin{aligned}
& E_{k}=\frac{1}{2} m v^{2} \\
& E_{k}=\frac{1}{2} \times 1050 \times 22.5^{2} \\
& E_{k}=525 \times 506.25 \\
& E_{k}=266 \mathrm{~kJ} \quad(E=266000 \mathrm{~J})
\end{aligned}
$$

b) The car slows to $5 \mathrm{~m} / \mathrm{s}$. Calculate the new kinetic energy.

$$
\begin{aligned}
& E_{k}=\frac{1}{2} m v^{2} \\
& E_{k}=\frac{1}{2} \times 1050 \times 5^{2} \\
& E_{k}=525 \times 25 \\
& E_{k}=13125 \mathrm{~J}
\end{aligned}
$$

c) Calculate the work done heating up the brakes.

The work done is EQUAL TO the LOSS IN Ek

$$
\begin{gathered}
E W=E k(\text { start })-E k(\text { end }) \\
E W=266000-13125 \\
E W=252875 \mathrm{~J}
\end{gathered}
$$

c) If the car travels 50 m as it brakes, what is the average braking force?

$$
\begin{aligned}
& E_{w}=F d \\
& 252875=F \times 50 \\
& \frac{252875}{50}=F \\
& F=5058 \mathrm{~N}
\end{aligned}
$$

