Virtual Flash Video

The audio can be turned off it is annoys. Here is the Virtual converted to an mp4 if I can get it to work. If people comment and find them useful I can do the rest.

PLEASE NOTE: I KNOW I HAVE A FEW BLOOPERS IN HERE. I’VE GOT TO FIND AN EDITING PACKAGE AND FIND TIME TO USE IT.

Radiation

This is the main Radiation post. Start here!

Thanks to Miss Horn for the Radiation Notes. Worked Answers to follow.

From Helpmyphysics

Fusion

Fusion is the process when two SMALL NUCLEI join to form a LARGER NUCLEI with the production of ENERGY

Fission

Fission is the process when two large nuclei split to form two smaller nuclei with the production of energy. This can occur spontaneously or due to a collision with a neutron. Often extra neutrons are produced.

Chain Reaction

When neutrons split nuclei by fission and extra neutrons are produced which can split further nuclei. Large quantities of energy are produced.

Reducing exposure to ionising radiation.

There are 3 groups of category to reduce harm caused by radiation:

  1. MONITOR
  2. SHIELD
  3. DISTANCE

Monitor includes things like wearing radiation badges or EPUs, timing how long you are exposed to radiation, checking with radiation counters any contamination on clothes.

Shielding is placing layers of absorbers between you and the source, BEWARE, goggles and a lab coat are great at protecting against alpha but have no effect on gamma. Only thick layers of lead would offer protection against gamma.

Distance. Radiation obeys the inverse square law, as you double the distance from a source the level you are exposed to decreases by ¼ . Using tongs is an effective method of keeping your distance from a source.

When it goes wrong

Chernobyl Nuclear Disaster 1986- Effects and Summary

Chernobyl Surviving Disaster (BBC Drama Documentary)

Chernobyl Questions
  1. What date was the Chernobyl Disaster?
  2. What was the name of the man who hanged himself at the start, who was narrating the story?
  3. Which reactor blew?
  4. What was the cause of the accident?
  5. How many people went to see what had happened?
  6. What happened to the people who saw the hole in the reactor?
  7. What day of the week was the disaster?
  8. What town was evacuated?
  9. How did they drain the water from the reactor?
  10. How did they put out the fire?
  11. What was the reading on the counter when they measured the radiation levels?
  12. Why was this reading misleading and wrong?
  13. What was the real count when it was measured correctly?
  14. What were some of the symptoms of radiation poisoning?
  15. Who was sent to prison for crimes to do with the disaster? (or record how many people went to jail)
  16. Who was president of the USSR when the disaster occurred?
  17. What was the trigger that caused the man to hang himself?
  18. What is the “elephant’s foot?” in the reactor?
  19. Have there been any other nuclear disasters? Can you find out about them and name them?
  20. What other things did you learn about nuclear power stations and radioactivity?
Signature
updated June 2019

HOMEWORK

For Friday 15th November,

Finish the question on POTENTIAL DIVIDER circuits in the ELECTRICITY BOOK. NB, these Questions are also given in the LOQ so you can answer them on paper and keep your notes up to date.

the OCTOBER ASSESSMENT, including where you went wrong and how you can correct this.

Assignment Starters

On www.Mrsphysics.co.uk/n5 Physics notes -> Assignment there are some Starter Questions. You MUST go through these carefully. The better prepared you are by looking over these questions the more likely you are to do well in the real thing.

NEW SPACE TEST DATE!

POSTPONED UNTIL FRIDAY 20TH SEPTEMBER.

2 LESSONS OF REVISION REQUIRED BEFORE THEN

A possible date for the Space Test Friday 6th September, but it depends on the content.

I don’t want to cover the energy section until we do with the Dynamics Section.

Summary Notes

I’ve found a producer of some succinct summary notes which I am updating and I’ll post here. I don’t seem to have a full set, but I’ll hunt them out.

Properties of Matter

Electricity

Mrs N Hunter Summary Notes

I am extremely grateful to Nancy Hunter from Shetland for these great summary notes. She has kindly given permission for me to upload them here.

Hope they help. I am not removing the Anderson High School as that is where they were produced! Thanks for sharing.

I’m also very grateful to Mr L Mitchell from Belmont Academy for his Key Definitions. I’ve taken the six documents and made them into one document, hope they help. Thanks for sharing!

TopicWord/Term Definition
DAcceleration The change in velocity per unit time. It is a vector quantity and is given by the gradient of the line on a velocity-time graph.
DAverage Speed The total distance travelled by an object measured over the total time taken. The rate of covering a distance. It is measured in metres per second.
DBearing A three-digit number without a degree symbol that can be used to describe direction. It is measured from North (000) in a clockwise direction.
DDeceleration A negative acceleration which indicates that an object is slowing down. The SQA have said they will use the term negative acceleration instead of using deceleration.
DDisplacement The shortest distance between the starting point and finishing point of a journey, which takes into account the direction of travel of the object. The two points are connected with a straight line. It is a vector quantity and is given by the area under a velocity-time graph.
DDistance How far an object has travelled from the starting point to the finishing point of a journey, regardless of its direction. It is a scalar quantity.
DInstantaneous Speed The speed of an object at a particular moment in time. It is measured in metres per second. The time for the instantaneous speed must be very small
DMass The quantity of particles that make up an object. It is a scalar quantity and is measured in kilograms (kg).
DResultant Vector The final vector drawn from the starting point to the finishing point after adding two vectors.
DScalar A quantity that consists of a magnitude (size) only.
DSpeed The distance travelled per unit time. The rate of covering a distance. It is a scalar quantity.
DVector A quantity that consists of a magnitude (size) and direction.
DVelocity The displacement per unit time. It is a vector quantity.
DWeight The force due to gravity acting on an object. It is a vector quantity and is measured in newtons (N).
SAsteroid Objects orbiting the sun that do not fulfil planetary criteria.
SCelestial Body A natural object in the sky.
SDocking The joining together of spacecraft modules in orbit. It requires a very precise Hohmann transfer from one orbit to the target orbit.
SDwarf Planet An object that orbits a star and is similar to a planet but is not large enough to clear its orbital path of debris.
SExoplanet A planet outside of our solar system that orbits a star.
SGalaxy A cluster of gravitationally bound stars, gas and dust clouds.
SGeostationary Satellite A satellite that has a period of 24 hours and orbits the Earth’s equator at an altitude of 36 000 km. It remains above the same point on the Earth’s surface.
SGravity Assist Using the gravitational pull of a celestial body to gain or lose orbital velocity.
SGravitational field strengthWeight per unit mass. Weight per kilogram. (Nkg -1 )
SGravity Turn A spacecraft takes a slight turn when it reaches a certain altitude after a vertical launch. This minimises the effect of the gravitational pull of the body on the spacecraft, allowing it to reach a certain horizontal speed for its desired orbit.
SHohmann Transfer The movement of a spacecraft from one circular orbit to another by gaining or losing orbital velocity.
SIon Drive Ion thrusters accelerate ions in an electric field to generate thrust rather than burning fuel. They only require a small amount of fuel to do this.
SKepler’s 3 rd Law As the orbital radius increases, the orbital period also increases.
SMoon A natural object that orbits a planet.
SOrbital Period The time taken to go around the Sun in one full revolution, or the time taken for a moon to go once around a planet etc
SOrbital Radius The distance between the centre of an object and the centre of the body it is orbiting.
SPlanet An object that does not undergo nuclear fusion but orbits a star.
SSolar System A central star orbited by planets.
SStar A large ball of hot gases that is undergoing nuclear fusion and emitting electromagnetic radiation
SSun The star at the centre of our solar system.
SUniverse Consists of many galaxies separated by empty space.
EAlternating Current (A.C.) An electric current which constantly changes direction and it's magnitude (size).
EAmmeter A component used to measure the current in a circuit.
EBattery A collection of two or more cells.
EBulb/Lamp A component that converts electrical energy to light energy.
ECell A component used to power a circuit.
EDirect Current (D.C.) The flow of electrons or charge in one direction only. Current which only flows direction in the circuit.
EElectric Field A force field that surrounds any electric charge, causing a charge to experience a force.
EElectrical Current The electric charge transferred per second.
EMains Voltage The voltage supplied to any electrical device plugged into the mains. In the UK, this is 230 V.
ENon-Ohmic Conductor A component that does not obey Ohm’s law.
EOhm’s Law For a fixed temperature, the voltage across a conductor is directly proportional to the current passing through it.
EOhmic Conductor A component that obeys Ohm’s law.
EOhmmeter A device used to measure the resistance of a circuit component.
EParallel Circuit A circuit in which there is more than one path (branch) for the current to flow.
EPotential Difference (Voltage) The energy supplied to each coulomb of charge that passes through a power supply.
EResistance The opposition to a current or electron flow.
EResistor A component that opposes the flow of current.
ESeries Circuit A circuit in which all components are connected one after the other and there is only one path for the current to flow.
ESwitch A component that allows a circuit to be turned on/off.
EVariable Resistor A component that allows the flow of current in a circuit to be changed.
EVoltmeter A device used to measure the voltage across a circuit component.
PoMAbsolute Zero The temperature at which the pressure in a substance is zero. This occurs at -273 °C (or 0 K), where we assume that the average kinetic energy of the particles is zero.
PoMCondensing The process by which a gas changes state to a liquid.
PoMConduction The transfer of heat through a solid. Heat flows from a high temperature to a low temperature.
PoMConvection The transfer of heat from one place to another by the movement of fluids (liquids and gases).
PoMFreezing The process by which a liquid changes state to a solid.
PoMFusion (Melting) The process by which a solid changes state to a liquid.
PoMHeat A form of energy measured in joules (J). It is a measure of the total kinetic energy of the particles in an object.
PoMPressure The force per unit area.
PoMRadiation The transfer of heat by electromagnetic waves (infrared).
PoMSpecific Heat Capacity The amount of heat energy required to change the temperature of 1 kg of a substance by 1 °C.
PoMSpecific Latent Heat The amount of heat energy required to change the state of 1 kg of a substance without a change in temperature .
PoMSpecific Latent Heat of Fusion The energy required to change 1 kg of a solid into a liquid at its melting point without a change in temperature.
PoMSpecific Latent Heat of Vaporisation The energy required to change 1 kg of a liquid into a gas at its boiling point.
PoMTemperature Indicates how hot or cold an object is, measured in degrees Celsius (°C) or kelvin (K). It is a measure of the average kinetic energy of the particles in an object.
PoMVaporisation (Evaporating) The process by which a liquid changes state to a gas.
WAmplitude The maximum distance from the mean position on a wave. (The vertical distance from the axis to the top of the wave (crest) or axis to the bottom of the wave (trough). It is also half the vertical height of the wave.
WAngle of Incidence The angle measured between the incident ray and the normal.
WAngle of Refraction The angle measured between the refracted ray and the normal.
WCrest The top point (peak) of a wave.
WDiffraction The bending of waves through gaps or around obstacles.
WEletromagnetic Spectrum A group of all the types of electromagnetic radiation ordered in terms of their wavelength/frequency. All the waves travel at the speed of light (3 ´ 10 8 ms -1 )
WFrequency The number of waves produced or passing a point per second.
WLongitudinal Wave A longitudinal wave is one where the particles vibrate along the same direction as the wave.
WNormal A dashed line that is drawn perpendicular (at 90°) to any surface.
WPeriod The time taken for one wave to pass a point. It is also calculated from the inverse of the frequency.
WRefraction The change in speed of light as it passes from one medium to another (e.g. from air to glass).
WTransverse Wave A transverse wave is one where the particles move at right angles (90°) to the direction of travel of the wave.
WTrough The bottom point of a wave.
WWave speedThe distance travelled per second. It is also the frequency multiplied by the wavelength.
WWavelength The horizontal distance from one crest to the next crest, one trough to the next trough or one point on a wave to the same point on the next wave.
RAbsorbed Dose The energy absorbed by a material per unit mass.
RActivity The number of nuclear decays (or disintegrations) per second.
RAlpha Particle A particle made up of 2 protons and 2 neutrons. It is also the nucleus of a helium atom. It has a charge or +2 or 3.2 ´ 10 -19 C
RAtom An overall neutral particle consisting of a nucleus (protons and neutrons) and orbiting electrons. All matter is made up of atoms.
RBackground Radiation Radiation that is all around us and is caused by both natural and artificial sources, e.g. radon gas.
RBeta Particle A fast moving electron. It has a charge of -1. It forms in the nucleus when a neutron changes to a proton.
RElectron A negatively charged particle that orbits the nucleus of an atom. It has a charge of -1. or -1.6 ´ 10 -19 C
RFilm Badge An obsolete radiation detector worn by people who work with radioactive materials to monitor the radiation dose that they are exposed to. It uses different filters which blacken or ‘fog’ when radiation hits them.
RGamma Ray An electromagnetic wave of very high frequency and energy.
RGeiger-Muller Tube A radiation detector that uses the ionisation of gas in the tube to count the number of times radiation hits it.
RHalf LifeThe time taken for the activity/ corrected count rate(of a radioactive source)to half
RIonisation The addition or removal of an electron from a neutral atom.
RNeutron A particle with neutral charge that exists in the nucleus of an atom.
RNucleus The small, dense region containing protons and neutrons at the centre of an atom.
RProton A positively charged particle in the nucleus of an atom. It has a charge of +1. or +1.6 ´ 10 -19 C
RRadiation Weighting Factor An indicator of the relative biological effect of radiation on a material.
RScintillation Counter A radiation detector that counts the flashes of light produced when radiation hits the scintillating material.
RShielding The act of placing a material between a person and a radioactive source to absorb radiation.

Learning Outcome Questions.

At last I’ve completed the LOQ. I am sure I’ll find mistakes when I produce the answers. I will get those done a.s.a.p, but they take a lot longer to type up than write up.

When completing these questions there is no point in just going straight to the answers, it wont teach you anything. Use the answers after you’ve completed what you can do and had a good guess at what you can’t. Mark in green anything you’ve had to look up.

Enjoy!

Complete book of outcome questions

Final version of the Learning Outcome Questions that are matched to the compendium

Individual Sections

ALL UNITS

Dynamics

Space

ELECTRICITY

Properties of Matter

Waves

Radiation

This also contains some bonus material on problem solving questions. You’ll find these in every paper.

December 2019
Signature

Learning Outcome Answers

This contains the N5 Physics Self Assessment Answers for each unit. Revise with these or use as homework

There is absolutely no point in just copying out the answers. There is an important requirement in checking your answers carefully to ensure you haven’t made a mistake and that you’ve understood the course specifications and the learning outcomes.

Only check over the answer when you’ve completed a section and mark them in green pen.

Advice from the SQA

From the Understanding Standards Meeting I went to Physics teachers were advised to tell their students NOT to add in the rearranging line for their calculations. Just do the formula, substitution and final line. For some of you this will involve too many steps so you might want to cross out any middle lines. I’ve shown mine in these answers to hopefully give you more help as to how to get to the answer.

All Units (the maths bit)

Dynamics

Finally finished, but I’ll need to edit out the duplicates but I’ll do that with the updated booklet so the numbers match. (updated 22nd June 2020) Not sure when they will get done, it might be a 2021 version

Space

Waves

Electricity

Properties of Matter

20/12/19 finished

Radioactivity & Variables Questions

Finished 27/07/20

Please if you find mistakes in my answers please add a comment below.

I will now need to go through and make a 2021 booklet of questions and answers with the corrections. This is a long slow process! I hope you find them useful, then it will have all been worthwhile…… Now I need to start the Higher ones!

Signature
July 2020

Waves Learning Outcome Questions

Until I complete the full Learning Outcome Question Booklet, which will probably take me until Christmas 2019 here is the WAVES section completed.

Hopefully by completing all of these questions you will have produced an excellent set of revision notes from which to revise.

You can always use these in electronic version to answer the questions but DON’T think you’ll produce one set between you and copy!

Signature

May 2019